Skip to main content
Log in

Optimization of Surfactin Production by Bacillus subtilis Isolate BS5

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis BS5 is a soil isolate that produces promising yield of surfactin biosurfactant in mineral salts medium (MSM). It was found that cellular growth and surfactin production in MSM were greatly affected by the environmental fermentation conditions and the medium components (carbon and nitrogen sources and minerals). Optimum environmental conditions for high surfactin production on the shake flask level were found to be a slightly acidic initial pH (6.5–6.8), an incubation temperature of 30°C, a 90% volumetric aeration percentage, and an inoculum size of 2% v/v. For media components, it was found that the optimum carbon source was molasses (160 ml/l), whereas the optimum nitrogen source was NaNO3 (5 g/l) and the optimum trace elements were ZnSO4·7H2O (0.16 g/l), FeCl3·6H2O (0.27 g/l), and MnSO4·H2O (0.017 g/l). A modified MSM (molasses MSM), combining the optimum medium components, was formulated and resulted in threefold increase in surfactin productivity that reached 1.12 g/l. No plasmid could be detected in the tested isolate, revealing that biosurfactant production by B. subtilis isolate BS5 is chromosomally mediated but not plasmid-mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Makkar, R. S., & Cameotra, S. S. (1999). Biosurfactant production by microorganisms on unconventional carbon sources. Journal of Surfactants and Detergents, 2, 237–241.

    Article  CAS  Google Scholar 

  2. Sanchez, M., Teruel, J. A., Espuny, M. J., Marques, A., Aranda, F. J., Manresa, A., et al. (2006). Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by a dirhamnolipid biosurfactant produced by Pseudomonas aeruginosa. Chemistry and Physics of Lipids, 142, 118–127.

    Article  CAS  Google Scholar 

  3. Banat, I. M. (1995). Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 51, 1–12.

    Article  CAS  Google Scholar 

  4. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  Google Scholar 

  5. Nitschke, M., & Pastore, G. M. (2004). Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Applied Biochemistry and Biotechnology, 112(3), 163–172.

    Article  CAS  Google Scholar 

  6. Cooper, D. G., Macdonald, T. C. R., Duff, S. J. B., & Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology, 42(3), 408–412.

    CAS  Google Scholar 

  7. Arima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31, 488–494.

    Article  CAS  Google Scholar 

  8. Vollenbroich, D., Ozel, M., Vater, J., Kamp, R. M., & Pauli, G. (1997). Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus Subtilis. Biologicals, 25, 289–297.

    Article  CAS  Google Scholar 

  9. Vollenbroich, D., Pauli, G., Ozel, M., & Vater, J. (1997). Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus Subtilis. Applied and Environmental Microbiology, 63(1), 44–49.

    CAS  Google Scholar 

  10. Nitschke, M., Ferraz, C., & Pastore, G. M. (2004). Selection of microorganisms for biosurfactant production using agroindustrial wastes. Brazilian Journal of Microbiology, 35, 81–85.

    Article  Google Scholar 

  11. Deleu, M., & Paquot, M. (2004). From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie, 7, 641–646.

    Article  CAS  Google Scholar 

  12. Hsieh, F.-C., Li, M.-C., Lin, T.-C., & Kao, S.-S. (2004). Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current Microbiology, 49, 186–191.

    Article  CAS  Google Scholar 

  13. Makkar, R. S., & Cameotra, S. S. (1997). Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. JAOCS, 74, 887–889.

    Article  CAS  Google Scholar 

  14. Mulligan, C. N., & Cooper, D. G. (1985). Pressate from peat dewatering as a substrate for bacterial growth. Applied and Environmental Microbiology, 50(1), 160–162.

    CAS  Google Scholar 

  15. Fox, S. L., & Bala, G. A. (2000). Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresource Technology, 75, 235–240.

    Article  CAS  Google Scholar 

  16. Manresa, M. A., Bastida, J., Mercade, M. E., Robert, M., de Andres, C., Espuny, M. J., et al. (1991). Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. Journal of Industrial Microbiology and Biotechnology, 8(2), 133–136.

    Article  CAS  Google Scholar 

  17. Guerra-Santos, L. H., Kappeli, O., & Fiechter, A. (1986). Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Applied Microbiology and Biotechnology, 24(6), 443–448.

    Article  CAS  Google Scholar 

  18. Chayabutra, C., Wu, J., & Ju, L.-K. (2001). Rhamnolipid production by Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and carbon substrates. Biotechnology and Bioengineering, 72(1), 25–33.

    Article  CAS  Google Scholar 

  19. Lang, S., & Wullbrandt, D. (1999). Rhamnose lipids—biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 51(1), 22–32.

    Article  CAS  Google Scholar 

  20. Wei, Q. F., Mather, R. R., & Fotheringham, A. F. (2005). Oil removal from used sorbents using a biosurfactant. Bioresource Technology, 96, 331–334.

    Article  CAS  Google Scholar 

  21. Nitschke, M., Costa, S. G. V. A. O., & Contiero, J. (2005). Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnology Progress, 21, 1593–1600.

    Article  CAS  Google Scholar 

  22. Abdel-Mawgoud, A. M., Aboulwafa, M. M., & Hassouna, N. A.-H. (2007). Microbial production of surfactants: screening and identification of two promising isolates and their biosurfactants. Egyptian Journal of Biotechnology, 27, in press.

  23. Alfermann, A. W., Dombrowski, K., Petersen, M., Schmauder, H.-P., & Schweizer, M. (1997). Basic scientific techniques for biotechnology—Analytical methods—Growth and cell viability. In H.-P. Schmauder, & M. Schweizer (Eds.) Methods in biotechnology ((pp. 13–14)2nd ed.). London: Taylor & Francis.

    Google Scholar 

  24. Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta, 1488, 211–218.

    CAS  Google Scholar 

  25. Youssef, N. H., Duncana, K. E., Naglea, D. P., Savagea, K. N., Knappb, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56, 339–347.

    Article  CAS  Google Scholar 

  26. Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., & Imanaka, T. (1993). A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology, 175(20), 6459–6466.

    CAS  Google Scholar 

  27. Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.

    Article  CAS  Google Scholar 

  28. Sambrouk, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  29. Gershater, C. J. L. (1999). Inoculum preparation. In M. C. Flickinger, & S. W. Drew (Eds.) Encyclopedia of bioprocess technology: Fermentation, biocatalysis, and bioseparation (pp. 1435–1443). New York: Wiley.

    Google Scholar 

  30. Lim, D. (1998). Nutrition and environmental influence. In E. W. Lester (Ed.) Microbiology: A human perspective(2nd ed.). Boston, MA: McGraw-Hill.

    Google Scholar 

  31. Kim, H.-S., Yoon, B.-D., Lee, C.-H., Suh, H.-H., Oh, H.-M., Katsuragi, T., & Tani, Y. (1997). Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Bioengineering, 84(1), 41–46.

    Article  Google Scholar 

  32. Smith, J. E. (1996). Bioprocess/fermentation technology. In: Biotechnology (3rd ed., pp. 60–61). UK: Cambridge University Press.

  33. Macdonald, C. R., Cooper, D. G., & Zajic, J. E. (1981). Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Applied and Environmental Microbiology, 41(1), 117–123.

    CAS  Google Scholar 

  34. Banat, I. M. (1993). The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnology Letters, 15(6), 591–594.

    Article  CAS  Google Scholar 

  35. Horowitz, S., Gilbert, J. N., & Griffin, W. M. (1990). Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. Journal of Industrial Microbiology, 6, 243–248.

    Article  CAS  Google Scholar 

  36. Javaheri, M., Jenneman, G. E., Mcinerney, M. J., & Knapp, R. M. (1985). Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Applied and Environmental Microbiology, 50(3), 698–700.

    CAS  Google Scholar 

  37. Lin, S. C., Carswell, K. S., Sharma, M. M., & Georgiou, G. (1994). Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Applied Microbiology and Biotechnology, 41, 281–285.

    Article  CAS  Google Scholar 

  38. Yakimov, M. M., Timmis, K. N., Wray, V., & Fredrickson, H. L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and Environmental Microbiology, 61(5), 1706–1713.

    CAS  Google Scholar 

  39. Koch, A. K., Kappeli, O., Fiechter, A., & Reiser, J. (1991). Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Journal of Bacteriology, 173(13), 4212–4219.

    CAS  Google Scholar 

  40. Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51, 553–563.

    Article  CAS  Google Scholar 

  41. Landy, M., Warren, G. H., Roseman, S. B., & Colio, L. G. (1948). Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proceedings of the Society for Experimental Biology and Medicine, 67, 539–541.

    CAS  Google Scholar 

  42. Wei, Y.-H., & Chu, I.-M. (1998). Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme and Microbial Technology, 22, 724–728.

    Article  CAS  Google Scholar 

  43. Wei, Y.-H., & Chu, I.-M. (2002). Mn2 improves surfactin production by Bacillus subtilis. Biotechnology Letters, 24, 479–482.

    Article  CAS  Google Scholar 

  44. Fleck, L. C., Bicca, F. C., & Ayub, M. A. Z. (2000). Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnology Letters, 22, 285–289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Khaled Abou-Shanab, a lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, for kindly providing the standard E. coli DH5α/pUC18 and giving advice on plasmid detection in the tested isolate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mabrouk Aboulwafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Mawgoud, A.M., Aboulwafa, M.M. & Hassouna, N.AH. Optimization of Surfactin Production by Bacillus subtilis Isolate BS5. Appl Biochem Biotechnol 150, 305–325 (2008). https://doi.org/10.1007/s12010-008-8155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8155-x

Keywords

Navigation