Skip to main content

Advertisement

Log in

Carboxylate Platform: The MixAlco Process Part 2: Process Economics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The MixAlco process employs a mixed culture of acid-forming microorganisms to convert biomass to carboxylate salts, which are concentrated via vapor-compression evaporation and subsequently chemically converted to other chemical and fuel products. To make alcohols, hydrogen is required, which can be supplied from a number of processes, including gasifying biomass, separation from fermentor gases, methane reforming, or electrolysis. Using zeolite catalysts, the alcohols can be oligomerized into hydrocarbons, such as gasoline. A 40-tonne/h plant processing municipal solid waste ($45/tonne tipping fee) and using hydrogen from a pipeline or refinery ($2.00/kg H2) can sell alcohols for $1.13/gal or gasoline for $1.75/gal with a 15% return on investment ($0.61/gal of alcohol or $0.99/gal of gasoline for cash costs only). The capital cost is $1.95/annual gallon of mixed alcohols. An 800-tonne/h plant processing high-yield biomass ($60/tonne) and gasifying fermentation residues and waste biomass to hydrogen ($1.42/kg H2) can sell alcohols for $1.33/gal or gasoline for $2.04/gal with a 15% return on investment ($1.08/gal of alcohol or $1.68/gal of gasoline for cash costs only). The capital cost for the alcohol and gasification plants at 800 tonnes/h is $1.45/annual gallon of mixed alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18, 189–199. doi:10.1016/S0961-9534(99)00091-4.

    Article  CAS  Google Scholar 

  2. Gandi, J., Holtzapple, M. T., Ferrer, A., Byers, F. M., Turner, N. D., Nagwani, M., et al. (1997). Lime treatment of agricultural residues to improve rumen digestibility. Animal Feed Science Journal, 68, 195–211. doi:10.1016/S0377-8401(97)00050-3.

    Article  Google Scholar 

  3. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63–65, 3–19. doi:10.1007/BF02920408.

    Article  Google Scholar 

  4. Chang, V. S., Nagwani, M., & Holtzapple, M. T. (1998). Lime pretreatment of crop residues: Bagasse and wheat straw. Applied Biochemistry and Biotechnology, 74, 135–159. doi:10.1007/BF02825962.

    Article  CAS  Google Scholar 

  5. Kim, S., & Holtzapple, M. T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology, 96, 1994–2006. Special Issue.

    Article  CAS  Google Scholar 

  6. Chang, V. S., Nagwani, M., Kim, C.-H., & Holtzapple, M. T. (2001). Oxidative lime pretreatment of high-lignin biomass. Applied Biochemistry and Biotechnology, 94, 1–28. doi:10.1385/ABAB:94:1:01.

    Article  CAS  Google Scholar 

  7. Sierra, R., Granda, C., Holtzapple, Mark T. (2008). Short-term Lime Pretreatment of Poplar Wood. Biotechnology Progress, in press.

  8. Aiello-Mazzarri, C., Coward-Kelly, G., Agbogbo, F. K., & Holtzapple, M. T. (2005). Conversion of municipal solid waste into carboxylic acids by anaerobic countercurrent fermentation: Effect of using intermediate lime treatment. Applied Biochemistry and Biotechnology, 127, 79–93. doi:10.1385/ABAB:127:2:079.

    Article  CAS  Google Scholar 

  9. Aiello-Mazzarri, C., Agbogbo, F. K., & Holtzapple, M. T. (2006). Conversion of municipal solid waste to carboxylic acids using a mixed culture of mesophilic microorganisms. Bioresource Technology, 97, 47–56. doi:10.1016/j.biortech.2005.02.020.

    Article  CAS  Google Scholar 

  10. Domke, S. B., Aiello-Mazzarri, C., & Holtzapple, M. T. (2004). Mixed acid fermentation of paper fines and industrial biosludge. Bioresource Technology, 91, 41–51. doi:10.1016/S0960-8524(03)00156-1.

    Article  CAS  Google Scholar 

  11. Chan, W. N., & Holtzapple, M. T. (2003). Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation. Applied Biochemistry and Biotechnology, 111, 93–112. doi:10.1385/ABAB:111:2:93.

    Article  CAS  Google Scholar 

  12. Thanakoses, P., Nagat, M., & Holtzapple, M. (2003a). Conversion of sugarcane bagasse to carboxylic acids using a mixed culture of mesophilic microorganisms. Applied Biochemistry and Biotechnology, 107, 523–546.

    Article  Google Scholar 

  13. Thanakoses, P., Black, A. S., & Holtzapple, M. T. (2003b). Fermentation of corn stover to carboxylic acids. Biotechnology and Bioengineering, 83, 191–200.

    Article  CAS  Google Scholar 

  14. Ross, M. K., & Holtzapple, M. T. (2001). Laboratory Method for High-Solids Countercurrent Fermentations. Applied Biochemistry and Biotechnology, 94, 111–126.

    Article  CAS  Google Scholar 

  15. Agbogbo, F. K., & Holtzapple, M. T. (2006). Fermentation of rice straw/chicken manure to carboxylic acids using a mixed culture of marine mesophilic micoorganisms. Applied Biochemistry and Biotechnology, 129–132, 997–1014.

    Article  Google Scholar 

  16. Agbogbo, F. K., & Holtzapple, M. T. (2007). Fixed-bed fermentation of rice straw and chicken manure using a mixed culture of marine mesophilic microorganisms. Bioresource Technology, 98(8), 1586–1595. doi:10.1016/j.biortech.2006.06.021.

    Article  CAS  Google Scholar 

  17. Maiorella, B. L. (1985). Ethanol. In M. Moo-young, H. W. Blanch, S. Drew, & D.I.C. Wang (Eds.), Comprehensive biotechnology (Vol. 3, pp. 861–914). New York: Pergamon Press.

    Google Scholar 

  18. Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  19. Spath, P., Aden, A., Eggeman, T., Ringer, M., Wallace, B., & Jechura, J. (2005). Biomass to Hydrogen Production Detailed Design and Economics Utilizing Battelle Columbus Laboratory Indirectly Heated Gasifier. NREL/TP-510-37408, http://www.nrel.gov/docs/fy05osti/37408.pdf

  20. Energy Information Administration (EIA) http://www.eia.doe.gov/bookshelf/brochures/gasolinepricesprimer/ and http://www.eia.doe.gov/pub/oil_gas/petroleum/analysis_publications/oil_market_basics/ref_image_prof_rate.htm. Accessed on November 2008.

  21. Repa, E. W. (2002). Tipping Fee Survey, NSWMA Research Bulletin 02-03. Washington, D.C.: National Solid Wastes Management Association.

    Google Scholar 

  22. Fu, Z. (2007). Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions, Ph. Dissertation, Texas A&M University, College Station, TX

  23. Levene J. I. Economic Analysis of Hydrogen Production from Wind, Conference Paper NREL/CP-560-38210, National Renewable Energy Laboratory, (May 2005). http://www.nrel.gov/docs/fy05osti/38210.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Holtzapple.

Additional information

Collaborators

Texas A&M University (College Station TX) developed the MixAlco process and its supporting technologies. Terrabon, L.L.C., (Houston, TX) holds the world-wide exclusive license to the MixAlco process and its supporting technologies. Trimeric is a third-party, technology-neutral, and independent technical services firm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granda, C.B., Holtzapple, M.T., Luce, G. et al. Carboxylate Platform: The MixAlco Process Part 2: Process Economics. Appl Biochem Biotechnol 156, 107–124 (2009). https://doi.org/10.1007/s12010-008-8481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8481-z

Keywords

Navigation