Skip to main content
Log in

High Xylose Yields from Dilute Acid Pretreatment of Corn Stover Under Process-Relevant Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave® reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 °C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Searchinger, T., Heimlich, R., Houghton, R. A., et al. (2008). Science, 319, 1238–1240. doi:10.1126/science.1151861.

    Article  CAS  Google Scholar 

  2. Perlack, R. D., et al. (2005). Biomass as feedstock for a bionergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy and US Department of Agriculture Report.

  3. Himmel, M. E., Ding, S. Y., Johnson, D. K., et al. (2007). Science, 315, 804–807. doi:10.1126/science.1137016.

    Article  CAS  Google Scholar 

  4. Mosier, N., Wyman, C., Dale, B., et al. (2005). Bioresource Technology, 96, 673–686. doi:10.1016/j.biortech.2004.06.025.

    Article  CAS  Google Scholar 

  5. Mcmillan, J. D. (1994). In M. E. Himmel, et al. (Ed.), Enzymatic conversion of biomass for fuels production pp. 411–437. Washington DC: American Chemical Society.

    Google Scholar 

  6. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977. doi:10.1016/j.biortech.2005.01.011.

    Article  CAS  Google Scholar 

  7. Saha, B. C., Iten, L. B., Cotta, M. A., et al. (2005). Biotechnology Progress, 21, 816–822. doi:10.1021/bp049564n.

    Article  CAS  Google Scholar 

  8. Zimbardi, F., Viola, E., Nanna, F., et al. (2007). Industrial Crops and Products, 26, 195–206. doi:10.1016/j.indcrop.2007.03.005.

    Article  CAS  Google Scholar 

  9. Schell, D. J., Farmer, J., Newman, M., et al. (2003). Applied Biochemistry and Biotechnology, 105, 69–85. doi:10.1385/ABAB:105:1-3:69.

    Article  Google Scholar 

  10. Schell, D. J., Walter, P. J., & Johnson, D. K. (1992). Applied Biochemistry and Biotechnology, 34–35, 659–665. doi:10.1007/BF02920586.

    Article  Google Scholar 

  11. Jeoh, T., Ishizawa, C. I., Davis, M. F., et al. (2007). Biotechnology and Bioengineering, 98, 112–122. doi:10.1002/bit.21408.

    Article  CAS  Google Scholar 

  12. Aden, A. M. R., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., & National Renewable Energy Laboratory (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  13. Tucker, M. P., Kim, K. H., Newman, M. M., et al. (2003). Applied Biochemistry and Biotechnology, 105, 165–177. doi:10.1385/ABAB:105:1-3:165.

    Article  Google Scholar 

  14. Nguyen, Q. A., Tucker, M. P., Keller, F. A., et al. (2000). Applied Biochemistry and Biotechnology, 84–86, 561–576. doi:10.1385/ABAB:84-86:1-9:561.

    Article  Google Scholar 

  15. Ahmed, A., & Kokta, B. (1998). In R. A. Young, & M. Akhtar (Eds.), Environmentally friendly technologies for the pulp and paper industry pp. 191–212. Hoboken: Wiley.

    Google Scholar 

  16. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 321, 523–536.

    Article  CAS  Google Scholar 

  17. Sluiter, A. B. H. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory NREL/TP-510-42623 ed.

    Google Scholar 

  18. Sluiter, A. B. H. (2008). Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory NREL/TP-510-42681 ed.

    Google Scholar 

  19. Mcmillan, J. D. (1994). In M. E. Himmel, et al. (Ed.), Enzymatic conversion of biomass for fuels production pp. 292–324. Washington DC: American Chemical Society.

    Google Scholar 

  20. Varga, E., Reczey, K., & Zacchi, G. (2004). Applied Biochemistry and Biotechnology, 113–116, 509–523. doi:10.1385/ABAB:114:1-3:509.

    Article  Google Scholar 

  21. Um, B. H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105, 115–125. doi:10.1385/ABAB:105:1-3:115.

    Article  Google Scholar 

  22. Wyman, C. E., Dale, B. E., Elander, R. T., et al. (2005). Bioresource Technology, 96, 2026–2032. doi:10.1016/j.biortech.2005.01.018.

    Article  CAS  Google Scholar 

  23. Bhandari, N., Macdonald, D. G., & Bakhshi, N. N. (1984). Biotechnology and Bioengineering, 26, 320–327. doi:10.1002/bit.260260405.

    Article  CAS  Google Scholar 

  24. Kim, S. B., & Lee, Y. Y. (2002). Bioresource Technology, 83, 165–171. doi:10.1016/S0960-8524(01)00197-3.

    Article  CAS  Google Scholar 

  25. Marie Linde, M. G., & Guido, Z. (2006). Applied Biochemistry and Biotechnology, 129–132, 546–572.

    Article  Google Scholar 

  26. Viamajala, S., Selig, M. J., Vinzant, T. B., Tucker, M. P., Himmel, M. E., McMillan, J. D., & Decker, S. R. (2006). Applied Biochemistry and Biotechnology, 130, 509–527.

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to thank Jeff Wolfe, Justin Sluiter, and David Templeton from the National Renewable Energy Laboratory for their technical and laboratory help. We also gratefully acknowledge the funding for this project provided by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah D. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, N.D., Nagle, N.J., Tucker, M.P. et al. High Xylose Yields from Dilute Acid Pretreatment of Corn Stover Under Process-Relevant Conditions. Appl Biochem Biotechnol 155, 115–125 (2009). https://doi.org/10.1007/s12010-008-8490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8490-y

Keywords

Navigation