Skip to main content
Log in

Heterotrophic Culture of Chlorella protothecoides in Various Nitrogen Sources for Lipid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The influences of urea, yeast extract, and nitrate as the nitrogen source on heterotrophic growth of four strains of Chlorella protothecoides were investigated in 9-day feed-batch cultures. Biomass dry weight concentration (DWC) and lipid yield (LY) of the four strains in all media were compared. The highest LY in 9 days was 654 mg/L/day by UTEX 255 in 2.4 g/L KNO3 medium with a biomass DWC of 11.7 g/L and lipid content of 50.5%. Using green autotrophic seeds instead of yellow heterotrophic seeds improved the biomass DWC (13.1 vs. 11.7 g/L), LY (850 vs. 654 mg/L/day), and lipid to glucose consumption ratio (0.607 vs. 0.162). Moreover, 17.0 g/L DWC and 489 mg/L/day LY were obtained from the sequentially mixed-nitrogen medium, and the lipid to glucose consumption ratio was improved to 0.197 from 0.162 in 2.4 g/L nitrate medium and from 0.108 in 4.2 g/L yeast extract medium in the first batch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program - biodiesel from algae. Report under contract No. DE-AC36-83CH10093, National Renewable Energy Laboratory, TP-580-24190. Available at: http://govdocs.aquake.org/cgi/reprint/2004/915/9150010.pdf.

  2. Arad, S. (1984). Development of outdoor raceway capable of yielding oil-rich halotolerant microalgae. Proceedings of the April Principal Investigators’ Meeting, Aquatic Species Program, Solar Energy Research Institute, Golden, Colorado, 184–185.

  3. Arad, S. (1987). Integrated field-scale production of oil-rich microalgae under desert conditions. FY 1986 Aquatic Species Program Annual Report, Solar Energy Research Institute, Golden, Colorado, 169–183.

  4. Weissman, J. C., Tillett, D. T. (1989). Design and operation of an outdoor microalgae test facility. In W.S. Bollmeier, S. Sprague (Eds.), Aquatic Species Program, Annual Report (pp. 107–123). Golden, Colorado: Solar Energy Research Institute.

  5. Weissman, J. C., Tillett, D. T. (1992). Design and operation of an outdoor microalgae test facility: Large-scale system results. FY 1989–1990 Aquatic Species Project Report, National Renewable Energy Laboratory, Golden, Colorado, 32–56.

  6. Gregor, H. P., & Gregor, C. D. (1978). Synthetic membrane technology. Scientific American, 239, 112–128.

    Article  CAS  Google Scholar 

  7. Timurian, R., Ward, R. L., & Jeffries, T. W. (1977). Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels. International Seaweed Symposium, 8, 20–27.

    Google Scholar 

  8. Shi, X., Jiang, Y., & Chen, F. (2002). High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress, 18, 723–727.

    Article  CAS  Google Scholar 

  9. da Silva, T. L., Mendes, A., Mendes, R. L., Calado, V., Alves, S. S., Vasconcelos, J. M. T., et al. (2006). Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production. Journal of Industrial Microbiology & Biotechnology, 33(6), 408–416.

    Article  CAS  Google Scholar 

  10. Chi, Z., Pyle, D., Wen, Z., Frear, C., & Chen, S. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 41, 1537–1545.

    Article  CAS  Google Scholar 

  11. Wu, Z. Y., & Shi, X. M. (2006). Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Letters in Applied Microbiology, 44, 13–18.

    Article  CAS  Google Scholar 

  12. Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293.

    Article  CAS  Google Scholar 

  13. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.

    Article  CAS  Google Scholar 

  14. Running, J. A., Huss, R. J., & Olson, P. T. (1994). Heterotrophic production of ascorbic acid by microalgae. Journal of Applied Phycology, 6, 99–104.

    Article  CAS  Google Scholar 

  15. Shi, X. M., Zhang, X. W., & Chen, F. (2000). Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 27, 312–318.

    Article  CAS  Google Scholar 

  16. Soong, P. (1980). Production and development of Cholorella and spirulina in Taiwan. In G. Shelef & C. J. Soeder (Eds.), Algae biomass, (pp. 97–113). Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  17. Miao, X. L., & Wu, Q. Y. (2005). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

  18. Becker, E. W. (1994). Measurement of algal growth. In: Microalgae biotechnology and microbiology (pp. 56–62). Cambridge, UK: Cambridge University Press. ISBN 0-521-35020-4.

  19. Xiong, W., Li, X. F., & Wu, Q. Y. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36.

    Article  CAS  Google Scholar 

  20. Sorokin, C., & Krauss, R. W. (1958). The effect of light intensity on the growth rates of green algae. Plant Physiology, 33, 109–113.

    Article  CAS  Google Scholar 

  21. Shi, X. M., Liu, H. J., Zhang, X. W., & Chen, F. (1999). Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry, 34, 341–347.

    Article  CAS  Google Scholar 

  22. Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2008). Culture of microalga botryococcus in livestock wastewater. Transactions of the ASABE, 54(4), 1395–1400.

    Google Scholar 

  23. Li, X. F., Xu, H., & Wu, Q. Y. (2007). Large-Scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.

    Article  CAS  Google Scholar 

  24. Gray, K. A., Zhao, L., & Emptage, M. (2006). Bioethanol, Current Opinion in Chemical Biology, 10, 141–146.

  25. Swaaf, M. E. D., Sijtsma, L., & Pronk, J. T. (2003). High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering, 81, 666–672.

    Article  CAS  Google Scholar 

  26. Chi, Z. Y., Pyle, D. J., Wen, Z. Y., Frear, C., & Chen, S. L. (2007). A laboratory study of producing docosahexaenoi acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42, 1537–1545.

    Article  CAS  Google Scholar 

  27. Pyle, D. J., Garcia, R. A., & Wen, Z. Y. (2008). Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 56, 3933–3939.

    Article  CAS  Google Scholar 

  28. Garcia-Ochoa, F., & Gomez, E. (2005). Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactor. Biotechnology and Bioengineering, 92, 761–772.

    Article  CAS  Google Scholar 

  29. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126–131.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Science Foundation project (CMMI-0836610) and by the Kansas Agricultural Experiment Station (contribution no. 09-076-J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Yuan, W., Pei, Z. et al. Heterotrophic Culture of Chlorella protothecoides in Various Nitrogen Sources for Lipid Production. Appl Biochem Biotechnol 160, 1674–1684 (2010). https://doi.org/10.1007/s12010-009-8659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8659-z

Keywords

Navigation