Skip to main content
Log in

Horticultural Waste as the Substrate for Cellulase and Hemicellulase Production by Trichoderma reesei Under Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Horticultural waste in wood chips form collected from a landscape company in Singapore was utilized as the substrate for the production of cellulase and hemicellulase under solid-state fermentation by Trichoderma reesei RUT-C30. The effects of substrate pretreatment methods, substrate particle size, incubation temperature and time, initial medium pH value, and moisture content on cellulase and hemicellulase production were investigated. Enzyme complex was obtained at the optimal conditions. This enzyme mixture contained FPase (15.0 U/g substrate dry matter, SDM), CMCase (90.5 U/g SDM), β-glucosidase (61.6 U/g SDM), xylanase (52.1 U/g SDM), and β-xylosidase (10.4 U/g SDM). The soluble protein concentration in the enzyme complex was 26.1 mg/g SDM. The potential of the crude enzyme complex produced was demonstrated by the hydrolysis of wood chips, wood dust, palm oil fiber, and waste newspaper. The performance of the crude enzyme complex was better than the commercial enzyme blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khoo, H. H., Tan, R. B. H., & Sagisaka, M. (2008). International Journal of Life Cycle Assessment (LCA), 13, 312–318.

    Article  CAS  Google Scholar 

  2. Wood and Horticultural Waste Recycling. (2008). Available from www.zerowastesg.com. Accessed May 31, 2009.

  3. Cardona, C. A., & Sánchez, Ó. J. (2007). Bioresource Technology, 98, 2415–2457.

    Article  CAS  Google Scholar 

  4. Krishna, C. (2005). Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  5. Pérez-Guerra, N., Torrado-Agrasar, A., López-Macias, C., & Pastrana, L. (2003). Electronic Journal of Environmental, Agricultural & Food Chemistry, 2, 343–350.

    Google Scholar 

  6. Reith, J. H., den Uil, H., van Veen, H., de Laat, W. T. A. M., Niessen, J. J., de Jong, E., et al. (2002). 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Amsterdam, The Netherlands.

  7. Wen, Z., Liao, W., & Chen, S. (2005). Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  8. Deshpande, P., Nair, S., & Khedkar, S. (2008). Applied Biochemistry and Biotechnology, 151, 1–9.

    Article  Google Scholar 

  9. Wen, Z., Liao, W., & Chen, S. (2005). Bioresource Technology, 96, 491–499.

    Article  CAS  Google Scholar 

  10. Aiello, C., Ferrer, A., & Ledesma, A. (1996). Bioresource Technology, 57, 13–18.

    Article  CAS  Google Scholar 

  11. Xia, L., & Shen, X. (2004). Bioresource Technology, 91, 259–262.

    Article  CAS  Google Scholar 

  12. Abd El-Nasser, N. H., Helmy, S. M., & El-Gammal, A. A. (1997). Polymer Degradation and Stability, 55, 249–255.

    Article  CAS  Google Scholar 

  13. Alam, M. Z., Muhammad, N., & Mahmat, M. E. (2005). American Journal of Applied Sciences, 2, 569–572.

    Article  CAS  Google Scholar 

  14. Esterbauer, H., Steiner, W., Labudova, I., Hermann, A., & Hayn, M. (1991). Bioresource Technology, 36, 51–65.

    Article  CAS  Google Scholar 

  15. Kubicek, C. P., Singh, A., Kumar, P. K. R., Schuegerl, K., Coolbear, T., Daniel, R. M., et al. (1992). Advances in Biochemical Engineering/Biotechnology, 45, 1–27.

    Article  CAS  Google Scholar 

  16. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–168.

    Article  CAS  Google Scholar 

  17. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 1739–1752.

    Article  CAS  Google Scholar 

  18. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  19. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Yang, H. P., Yan, R., Chen, H. P., Zheng, C. G., Lee, D. H., & Liang, D. T. (2006). Energy Fuels, 20, 388–393.

    Article  CAS  Google Scholar 

  22. Ehrman, T. (1996). Ethanol project laboratory analytical procedure #004. Available from http://cobweb.ecn.purdue.edu/∼lorre/16/research/LAP-004.pdf. Accessed May 31 2009.

  23. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  24. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  25. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  26. Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Enzyme and Microbial Technology, 8, 274–280.

    Article  CAS  Google Scholar 

  27. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Mark Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  28. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  29. Gowthaman, M. K., Krishna, C., & Moo-Young, M. (2001). Applied Mycology and Biotechnology, 1, 305–352.

    Article  CAS  Google Scholar 

  30. Moo-Young, M., Moreira, A. R., & Tengerdy, R. P. (1983). Filamentous Fungi, 4, 117–144.

    Google Scholar 

  31. Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Enzyme and Microbial Technology, 7, 258–265.

    Article  CAS  Google Scholar 

  32. Tao, S., Liu, B., Li, Z., & Liu, D. (1999). Process Biochemistry, 34, 25–9.

    Article  CAS  Google Scholar 

  33. Kabel, M. A., van der Maarel, M. J. E. C., Klip, G., Voragen, A. G. J., Henk, A., & Schols, H. A. (2006). Biotechnology and Bioengineering, 93, 56–63.

    Article  CAS  Google Scholar 

  34. Jørgensen, H., & Olsson, L. (2006). Enzyme and Microbial Technology, 38, 381–390.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support to this work from Singapore Totalisation Board and Ngee Ann Kongsi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anli Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, F., Geng, A. Horticultural Waste as the Substrate for Cellulase and Hemicellulase Production by Trichoderma reesei Under Solid-State Fermentation. Appl Biochem Biotechnol 162, 295–306 (2010). https://doi.org/10.1007/s12010-009-8745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8745-2

Keywords

Navigation