Skip to main content
Log in

Co-immobilization Mechanism of Cellulase and Xylanase on a Reversibly Soluble Polymer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulase and xylanase from Trichoderma reesei were immobilized simultaneously on Eudragit L-100, a reversibly soluble polymer. The effects of polymer concentration and polymer precipitation pH on enzyme activity recovery were investigated at an enzyme complex concentration of 1%. The immobilization mechanism of cellulase and xylanase on the polymer was discussed. An activity recovery of 75% and 59% was obtained for the cellulase and the xylanase, respectively, under the condition of a polymer concentration at 2% and a polymer precipitation pH at 4.0. Most zymoproteins might be connected to the polymer by electrostatic attraction in a medium of pH 4.8. In addition, the covalent coupling between the zymoproteins and the polymer was demonstrated by the infrared spectrograms. It was suggested that dehydration–condensation reaction occurred between the zymoproteins and the polymer during the immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Min, N. Z., & Wu, W. (2000). Green chemistry and engineering (in Chinese). Beijing: Chemical Industry Press.

    Google Scholar 

  2. Himan, N. D., Schell, D. J., Riley, J., Bergeron, P. W., & Walter, P. J. (1992). Preliminary estimate of the cost of ethanol production for SSF technology. Applied Biochemistry and Biotechnology, 34, 639–649.

    Article  Google Scholar 

  3. He, X., Miao, Y., Jiang, X., Xu, Z., & Ouyang, P. (2010). Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Applied Biochemistry and Biotechnology, 160, 2449–2457.

    Article  CAS  Google Scholar 

  4. Fujimura, M., Mori, T., & Tosa, T. (1987). Preparation and properties of soluble–insoluble immobilized proteases. Biotechnology and Bioengineering, 29, 747–752.

    Article  CAS  Google Scholar 

  5. Cao, L. Q. (2005). Carrier-bound immobilized enzymes: principles, application and design. New Jersey: Wiley.

    Book  Google Scholar 

  6. Sardar, M., Ipsita, R., & Gupta, M. N. (2000). Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversible soluble polymer Eudragit TM L-100. Enzyme and Microbial Technology, 27, 672–679.

    Article  CAS  Google Scholar 

  7. Dourado, F., Bastos, M., Mota, M., & Gama, F. M. (2002). Studies on the properties of Celluclast/Eudragit L-100 conjugate. Journal of Biotechnology, 99, 121–131.

    Article  CAS  Google Scholar 

  8. Saelee, N. (2007). The production of fungal mannanase, cellulase and xylanase using palm kernel meal as substrate. Walailak Journal of Science and Technology, 4, 67–82.

    Google Scholar 

  9. Xu, Z., Miao, Y., Chen, JY., Jiang, X., He, X., Ouyang, P., (2009) Co-immobilization of cellulase and xylanase using a reversibly soluble–insoluble carrier (in Chinese). Biotechnol Business, extra edn, 162–168.

  10. Margolin, A. L., Sherstyuk, S. F., Izumrudov, V. A., Zezin, A. B., & Kabanov, V. A. (1985). Enzymes in polyelectrolyte complexes. The effect of phase transition on thermal stability. European Journal of Biochemistry, 146, 625–632.

    Article  CAS  Google Scholar 

  11. Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium, 6, 21–33.

    CAS  Google Scholar 

  12. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  13. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  14. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. Ferraro, J. R., & Laboratories, S. R. (1982). The Sadtler infrared spectra handbook of minerals and clays. Philadelphia: Sadtler.

    Google Scholar 

  16. Terri, T. T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 15, 160–167.

    Article  CAS  Google Scholar 

  17. Prade, R. A. (1996). Xylanases: from biology to biotechnology. Biotechnology & Genetic Engineering Reviews, 13, 101–131.

    CAS  Google Scholar 

  18. Sun, W. C., Cheng, C. H., & Lee, W. C. (2008). Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochemistry, 43, 1083–1087.

    Article  CAS  Google Scholar 

  19. Roberge, M., Dupont, C., Morosoli, R., Shareck, F., & Kluepfel, D. (1997). Asparagine-127 of xylanase A from Streptomyces lividans, a key residue in glycosyl hydrolases of superfamily 4/7: kinetic evidence for its involvement in stabilization of the catalytic intermediate. Protein Engineering, 10, 399–403.

    Article  CAS  Google Scholar 

  20. Lewin, B. (2007). Genes IX. Boston: Jones & Bartlett.

    Google Scholar 

  21. Taniguchi, M., Hoshino, K., Watanable, K., Sugai, K., & Fujii, M. (1992). Production of soluble sugar from cellulosic materials by repeated use of a reversibly soluble-autoprecipitating cellulase. Biotechnology and Bioengineering, 39, 287–292.

    Article  CAS  Google Scholar 

  22. Cong, L., Kaul, R., Dissing, U., & Mattiasson, B. (1995). A model study on Eudragit and polyethyleneimine as soluble carriers of α-amylase for repeated hydrolysis of starch. Journal of Biotechnology, 42, 75–84.

    Article  CAS  Google Scholar 

  23. Hoshino, K., Taniguchi, M., Ueoka, H., Ohkuwa, M., Chida, C., Morohashi, S., et al. (1996). Repeated utilization of β-glucosidase immobilized on a reversibly soluble–insoluble polymer for hydrolysis of phloridzin as a model reaction producing a water-insoluble product. Journal of Fermentation and Bioengineering, 82(3), 253–258.

    Article  CAS  Google Scholar 

  24. Smith, E., Zhang, Q., Shen, J., Schroeder, M., & Sliva, C. (2008). Modification of Esperase by covalent bonding to Eudragit polymers L 100 and S 100 for wool fibre surface treatment. Biocatalysis and Biotransformation, 26(5), 391–398.

    Article  CAS  Google Scholar 

  25. Zhang, Y., Xu, J., Yuan, Z., Xu, H., & Yu, Q. (2010). Artificial neural network — genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresource Technology, 101(9), 3153–3158.

    Article  CAS  Google Scholar 

  26. Sardar, M., Agarwal, R., Kumar, A., & Gupta, M. N. (1997). Noncovalent immobilization of enzymes on an enteric polymer Eudragit S-100. Enzyme and Microbial Technology, 20, 361–367.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research project was financially supported by a grant of the National Natural Science Foundation of China and the People’s Government of Guangdong Province (U0733001) and a grant of National Basic Research Program of China (973 Program, 2009CB724700). The authors would like to thank Novozymes Investment for providing the commercial enzyme complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelian Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Miao, Y., Chen, J.Y. et al. Co-immobilization Mechanism of Cellulase and Xylanase on a Reversibly Soluble Polymer. Appl Biochem Biotechnol 163, 153–161 (2011). https://doi.org/10.1007/s12010-010-9024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9024-y

Keywords

Navigation