Skip to main content
Log in

Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis and Organosolv) for Wheat Straw Delignification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work describes the delignification of wheat straw through an environmentally friendly process resulting from sequential application of autohydrolysis and organosolv processes. Wheat straw autohydrolysis was performed at 180°C during 30 min with a liquid–solid ratio of 10 (v/w); under these conditions, a solubilization of 44% of the original xylan, with 78% of sugars as xylooligosaccharides of the sum of sugars solubilized in the autohydrolysis liquors generated by the hemicellulose fraction hydrolysis. The corresponding solid fraction enrichment with 63.7% of glucan and 7.55% of residual xylan was treated with a 40% ethanol and 0.1% NaOH aqueous solution at a liquid–solid ratio of 10 (v/w), with the best results obtained at 180°C during 20 min. The highest lignin recovery, measured by acid precipitation of the extracted lignin, was 3.25 g/100 ml. The lignin obtained by precipitation was characterized by FTIR, and the crystallinity indexes from the native cellulose, the cellulose recovered after autohydrolysis, and the cellulose obtained after applying the organosolv process were obtained by X-ray diffraction, returning values of 21.32%, 55.17%, and 53.59%, respectively. Visualization of the fibers was done for all the processing steps using scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hongzhang, C., & Liying, L. (2007). Bioresource Technology, 98, 666–676.

    Article  CAS  Google Scholar 

  2. Turley, D. (2008), Introduction to chemicals from biomass, vol. 1: The chemical value of biomass. In: Clark, J., & Deswarte F. (Ed.) (pp. 21–46). UK: John Wiley & Sons.

  3. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., et al. (2006). Biotechnology & Bioengineering, 94, 851–861.

    Article  CAS  Google Scholar 

  4. Montane, D., Farriol, X., Salvado, J., Jollez, P., & Chornet, E. (1998). Biomass and Bioenergy, 14, 261–276.

    Article  CAS  Google Scholar 

  5. Peterson, P. B. (1988). Agricultural Progress, 63, 8–23.

    Google Scholar 

  6. The agricultural production (2007). Available from: www.faostat.fao.org. Accessed April 5, 2010.

  7. Garrote, G., Cruz, J., Moure, A., Dominguez, H., & Parajo, J. (2004). Trends in Food Science and Technology, 15, 191–200.

    Article  CAS  Google Scholar 

  8. Brunow, G. (2006), Biorefineries—Industrial processes and products, vol. 2: Lignin chemistry and its role in biomass conversion. In: Hopf, H., & Anastas, P. (Ed.). (pp. 151–160). Weinheim, Ge: Wiley-VCH.

  9. Fengel, D., & Wegener, G. (1989). Wood: Chemistry, ultrastructure, reactions. NY: Walter de Gruyter.

    Google Scholar 

  10. Sjödahl, R. (2006), PhD thesis, Royal Institute of Technology, Stockholm, SE.

  11. Mansouri, N., & Salvado, J. (2006). Industrial Crops and Products, 24, 8–16.

    Article  Google Scholar 

  12. Garrote, G., Eugenio, M. E., Díaz, M. J., Ariza, J., & López, F. (2003). Bioresource Technology, 88, 61–68.

    Article  CAS  Google Scholar 

  13. Kleinert, T. N. (1974). Tappi Journal, 57, 99–102.

    CAS  Google Scholar 

  14. Aziz, S., & Sarkanen, K. (1989). Tappi Journal, 72, 169–175.

    CAS  Google Scholar 

  15. Gonçalves, A., & Ruzene, D. S. (2001). Applied Biochemistry and Biotechnology, 91–93, 63–70.

    Article  Google Scholar 

  16. Gonçalves, A. R., & Ruzene, D. S. (2003). Applied Biochemistry and Biotechnology, 105, 195–204.

    Article  Google Scholar 

  17. Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., et al. (2005). Biotechnology & Bioengineering, 90, 473–481.

    Article  CAS  Google Scholar 

  18. Muurinen, E. (2000). PhD thesis, University of Oulu, Oulu, Fi.

  19. Arato, C., Pye, E. K., & Gjennestad, G. (2005). Applied Biochemistry and Biotechnology, 121–124, 871–882.

    Article  Google Scholar 

  20. Young, R. A., & Akhtar, M. (1998). Environmentally friendly technologies for the pulp and paper industry (3rd ed.). NY: Wiley.

    Google Scholar 

  21. Ziaie, S., & Mohammadi, J. (2007). Iranian Polymer, 16, 83–96.

    Google Scholar 

  22. Gilarrahz, M. A., Oliet, M., Rodriguez, F., & Tijero, J. (1998). Canadian Journal of Chemical Engineering, 76, 253–260.

    Article  Google Scholar 

  23. Jiménez, L., García, J. C., Pérez, I., Ariza, J., & López, F. (2001). Industrial and Engineering Chemistry Research, 40, 6201–6206.

    Article  Google Scholar 

  24. Gargulak, J., & Lebo, S. (2000) In lignin: historical, biological, and materials perspectives, vol. 742: Commercial use of lignin-based materials. In: Glasser, W. G., Northey, R. A., & Schultz, T. P. (Ed.). (pp. 304–320). Washington, DC: American Chemical Society.

  25. Lora, J. (1992). Proceedings, Proc. VI Cong. Lat. Cel. Pap., Torremolinos, Spain.

  26. Zhao, X., Cheng, K., & Liu, D. (2009). Applied Microbiology and Biotechnology, 82, 815–827.

    Article  CAS  Google Scholar 

  27. Jørgensen, H., Kristensen, J., & Felby, C. (2007). Biofuels Bioprod Bioref, 1, 119–134.

    Article  Google Scholar 

  28. Chum, H., Johnson, D., & Black, S. (1990). Industrial and Engineering Chemistry Research, 29, 156–162.

    Article  CAS  Google Scholar 

  29. Browning, B. L. (1967). Methods of wood chemistry (1st ed.). NY: Interscience.

    Google Scholar 

  30. Ruiz, H., Ruzene, D., Silva, D., Quintas, M., Vicente, A., & Teixeira, J. (2011). Journal of Chemical Technology and Biotechnology, 86, 88–94.

    Article  CAS  Google Scholar 

  31. Garrote, G., Dominguez, H., & Parajo, J. (2002). Journal of Food Engineering, 52, 211–218.

    Article  Google Scholar 

  32. Carvalheiro, F., Fernandes, T., Duarte, L., & Gírio, F. (2009). Applied Biochemistry and Biotechnology, 153, 84–93.

    Article  CAS  Google Scholar 

  33. Carvalheiro, F., Garrote, G., Parajó, J., Pereira, H., & Gírio, F. (2005). Biotechnology Progress, 21, 233–243.

    Article  CAS  Google Scholar 

  34. Garrote, G., Domínguez, H., & Parajó, J. (2001). Holz als Roh- und Werkstoff, 59, 53–59.

    Article  CAS  Google Scholar 

  35. Uloth, V., & Wearing, J. (1989). Pulp and Paper of Canada, 90, 310–314.

    Google Scholar 

  36. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., et al. (2008). Bioscience, Biotechnology and Biochemistry, 72, 805–810.

    Article  CAS  Google Scholar 

  37. Fengel, D., & Wegener, G. (1984). Wood chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter.

    Google Scholar 

  38. Ruzene, D., Silva, D., Vicente, A., Gonçalves, A., & Teixeira, J. (2008). Applied Biochemistry and Biotechnology, 147, 453–464.

    Article  Google Scholar 

  39. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.

    Article  CAS  Google Scholar 

  40. Garrote, G., Falqué, E., Domínguez, H., & Parajó, J. C. (2007). Bioresource Technology, 98, 1951–1957.

    Article  CAS  Google Scholar 

  41. Nabarlatz, D., Ebringerová, A., & Montané, D. (2007). Carbohydrate Polymers, 69, 20–28.

    Article  CAS  Google Scholar 

  42. Gullón, B., Alonso, J., & Parajó, J. (2010). Bioresource Technology, 101, 6676–6684.

    Article  Google Scholar 

  43. Vegas, R., Alonso, J., Domínguez, H., & Parajó, J. (2004). Journal of Agricultural and Food Chemistry, 52, 7311–7317.

    Article  CAS  Google Scholar 

  44. García, A., Toledano, A., Serrano, L., Egüés, I., González, M., Marín, F., et al. (2009). Separation and Purification Technology, 68, 193–198.

    Article  Google Scholar 

  45. Lawther, J., Sun, R., & Banks, W. J. (1996). Agricultural and Food Chemistry, 44, 1241–1247.

    Article  CAS  Google Scholar 

  46. Nimz, H. (1974). Angewandte Chemie International, 13, 313–321.

    Article  Google Scholar 

  47. Sun, X. (2004). Polymer Degradation and Stability, 86, 245–256.

    Article  CAS  Google Scholar 

  48. Faix, O. (1991). Holzforschung., 45, 21–27.

    Article  CAS  Google Scholar 

  49. Gümüfikaya, E., & Usta, M. (2002). Turkish Journal of Agriculture, 26, 247–252.

    Google Scholar 

  50. Liu, R., Yu, H., & Huang, Y. (2005). Cellulose., 12, 25–34.

    Article  Google Scholar 

  51. Öztürk, H., Potthast, A., Rosenau, T., Abu-Rous, M., MacNaughtan, B., Schuster, K., et al. (2009). Cellulose, 16, 37–52.

    Article  Google Scholar 

  52. Carrasco, J., Sáiz, M., Navarro, A., Soriano, P., Saez, F., & Martinez, J. (1994). Applied Biochemistry and Biotechnology, 45, 23–34.

    Article  Google Scholar 

  53. Dogaris, I., Karapati, S., Mamma, D., Kalogeris, E., & Kekos, D. (2009). Bioresource Technolnology, 100, 6543–6549.

    Article  CAS  Google Scholar 

  54. Ouajai, S., & Shanks, R. (2005). Polymers Degradation and Stability, 89, 327–335.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Juan Carlos Parajó from University of Vigo, for the assistance in the materials preparation under autohydrolysis process as well as the ALBAN program for the PhD fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, H.A., Ruzene, D.S., Silva, D.P. et al. Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis and Organosolv) for Wheat Straw Delignification. Appl Biochem Biotechnol 164, 629–641 (2011). https://doi.org/10.1007/s12010-011-9163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9163-9

Keywords

Navigation