Skip to main content
Log in

Catalytic Performance of Corn Stover Hydrolysis by a New Isolate Penicillium sp. ECU0913 Producing both Cellulase and Xylanase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A fungal strain, marked as ECU0913, producing high activities of both cellulase and xylanase was newly isolated from soil sample collected near decaying straw and identified as Penicillium sp. based on internal transcribed spacer sequence homology. The cultivation of this fungus produced both cellulase (2.40 FPU/ml) and xylanase (241 IU/ml) on a stepwisely optimized medium at 30 °C for 144 h. The cellulase and xylanase from Penicillium sp. ECU0913 was stable at an ambient temperature with half-lives of 28 and 12 days, respectively. Addition of 3 M sorbitol greatly improved the thermostability of the two enzymes, with half-lives increased by 2.3 and 188-folds, respectively. Catalytic performance of the Penicillium cellulase and xylanase was evaluated by the hydrolysis of corn stover pretreated by steam explosion. With an enzyme dosage of 50 FPU/g dry substrate, the conversions of cellulose and hemicellulose reached 77.2% and 47.5%, respectively, without adding any accessory enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adsul, M. G., Bastawde, K. B., Varma, A. J., & Gokhale, D. V. (2007). Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresource Technology, 98, 1467–1473.

    Article  CAS  Google Scholar 

  2. Ahamed, A., & Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40, 399–407.

    Article  CAS  Google Scholar 

  3. Ahamed, A., & Vermette, P. (2008). Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochemical Engineering Journal, 42, 41–46.

    Article  CAS  Google Scholar 

  4. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  5. Berghem, L. E. R., & Pettersson, L. G. (1974). Mechanism of enzymatic cellulose degradation: isolation and some properties of a beta-glucosidase from Trichoderma viride. European Journal of Biochemistry, 46, 295–305.

    Article  CAS  Google Scholar 

  6. Camassola, M., & Dillon, A. J. P. (2007). Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. Journal of Applied Microbiology, 103, 2196–2204.

    Article  CAS  Google Scholar 

  7. Camassola, M., & Dillon, A. J. P. (2009). Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Industrial Crops and Products, 29, 642–647.

    Article  CAS  Google Scholar 

  8. Cobos, A., & Estrada, P. (2003). Effect of polyhydroxylic cosolvents on the thermostability and activity of xylanase from Trichoderma reesei QM 9414. Enzyme and Microbial Technology, 33, 810–818.

    Article  CAS  Google Scholar 

  9. George, S. P., Ahmad, A., & Rao, M. B. (2001). A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability. Bioresource Technology, 78, 221–224.

    Article  CAS  Google Scholar 

  10. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  11. Heck, J. X., Hertz, P. F. M., & Ayub, A. Z. (2002). Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Brazilian Journal of Microbiology, 33, 213–218.

    Article  CAS  Google Scholar 

  12. Ikeda, Y., Hayashi, H., Okuda, N., & Park, E. Y. (2007). Efficient Cellulase Production by the Filamentous Fungus Acremonium cellulolyticus. Biotechnology Progress, 23, 333–338.

    Article  CAS  Google Scholar 

  13. Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36, 42–48.

    Article  Google Scholar 

  14. Kevin, A. G., Zhao, L. S., & Mark, E. (2006). Bioethanol Current Opinion in Chemical Biology, 10, 141–146.

    Article  Google Scholar 

  15. Kovács, K., Megyeri, L., Szakacs, G., Kubicek, C. P., Galbe, M., & Zacchi, G. (2008). Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology, 43, 48–55.

    Article  Google Scholar 

  16. Kovács, K., Szakacs, G., & Zacchi, G. (2009). Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresource Technology, 100, 1350–1357.

    Article  Google Scholar 

  17. Kristensen, J. B., Borjesson, J., Bruun, M. H., Tjerneld, F., & Jørgensen, H. (2007). Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology, 40, 888–895.

    Article  CAS  Google Scholar 

  18. Kumar, R., & Wyman, C. E. (2009). Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technology, 100, 4203–4213.

    Article  CAS  Google Scholar 

  19. Li, Y., Liu, Z., Cui, F., Xu, Y., & Zhao, H. (2007). Production of xylanase from a newly isolated Penicillium sp. ZH-30. World Journal of Microbiology & Biotechnology, 23, 837–843.

    Article  CAS  Google Scholar 

  20. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  21. Liu, J., Yuan, X. Z., Zeng, G. M., Shi, J. G., & Chen, S. (2006). Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochemistry, 41, 2347–2351.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  23. Malherbe, S., & Cloete, T. E. (2002). Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science & Biotechnology, 1, 105–114.

    Article  CAS  Google Scholar 

  24. Mandels, M., & Weber, J. (1969). The production of cellulases. Advances in Chemistry Series, 5, 391–414.

    Google Scholar 

  25. Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99, 1417–1424.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid for determination of reducing sugar. Analytical Chemistry, 31, 426–430.

    Article  CAS  Google Scholar 

  27. Mishra, C. S., Keskar, & Rao, M. (1984). Production and properties of extracellular endoxylanase from Neurospora crassa. Applied and Environmental Microbiology, 48, 224–228.

    CAS  Google Scholar 

  28. Sehnem, N. T., Bittencourt, L. R., Camassola, M., & Dillon, A. J. P. (2006). Cellulase production by Penicillium echinulatum on lactose. Applied Microbiology and Biotechnology, 72, 163–167.

    Article  CAS  Google Scholar 

  29. Selig, M., Weiss, N., Ji, Y. (2008). Enzymatic Saccharification of Lignocellulosic Biomass. NREL Laboratory Analytical Procedure. http://www.eere.energy.gov/biomass/analyticalprocedures.html#LAP- 009.

  30. Shah, A. R., & Madamwar, D. (2005). Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochemistry, 40, 1763–1771.

    Article  CAS  Google Scholar 

  31. Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  32. Väljamäe, P., Sild, V., Pettersson, G., & Johansson, G. (1998). The initial kinetics of hydrolysis by cellobiohydrolases Ι and ΙΙ is consistent with a cellulose surface-erosion model. European Journal of Biochemistry, 253, 469–475.

    Article  Google Scholar 

  33. Vlasenko, E. Y., Ding, H., Labavitch, J. M., & Shoemaker, S. P. (1997). Enzymatic hydrolysis of pretreated rice straw. Bioresource Technology, 59, 109–119.

    Article  CAS  Google Scholar 

  34. Vries, R. (2003). Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes: relevance for industrial production. Applied Microbiology and Biotechnology, 61, 10–20.

    Google Scholar 

  35. Whitehurst, R. J., & Law, B. A. (2002). The nature of enzymes and their action in foods. Enzymes in Food Technology, 23, 1–18.

    Google Scholar 

  36. Zhang, J., Chu, D., Huang, J., Yu, Z., Dai, G., & Bao, J. (2010). Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnology and Bioengineering, 105, 718–728.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (grant nos. 20902023), National Special Fund for State Key Laboratory of Bioreactor Engineering (grant no. 2060204), Shanghai Leading Academic Discipline Project (No. B505), the Excellence Initiative of East China University of Science and Technology and Open Funding Project of the State Key Laboratory of Bioreactor Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, QQ., Sun, J., Yu, HL. et al. Catalytic Performance of Corn Stover Hydrolysis by a New Isolate Penicillium sp. ECU0913 Producing both Cellulase and Xylanase. Appl Biochem Biotechnol 164, 819–830 (2011). https://doi.org/10.1007/s12010-011-9176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9176-4

Keywords

Navigation