Skip to main content
Log in

Co-cultured Production of Lignin-Modifying Enzymes with White-Rot Fungi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Co-cultivation was a potential strategy in lignocellulolytic biodegradation with producing high activity enzymes due to their synergistic action. The objective of this study was to investigate the rarely understood effects of co-culturing of two white-rot fungi on lignin-modifying enzymes (LMEs) production. Six species, Bjerkandera adusta, Phlebia radiata, Pleurotus ostreatus, Dichomitus squalens, Hypoxylon fragiforme and Pleurotus eryngii, were cultured in pairs to study the production of LMEs. The paired hyphal interaction observed showed that P. eryngii is not suitable for co-growth. The use of agar plates containing dye RBBR showed elevated decolourisation at the confrontation zone between mycelia. Laccase was significantly stimulated only in the co-culture of P. radiata with D. squalens under submerged cultivation; the highest value was measured after 4 days of incubation (120 U mg−1). The improved productions of MnP and LiP were simultaneously observed at the co-culture of P. ostreatus and P. radiata (MnP = 800 nkat L−1 after 4 days of incubation; LiP = 60 nkat L−1 after 7 days of incubation), though it was not a good producer of laccase. P. ostreatus appeared to possess specific potential to be used in co-cultured production of LMEs. The phenotype of LMEs production was not only dependent on the species used but also regulated by different nutritions available in the culture medium. The present data will provide evidence for illustrating the regulatory roles of C/N on LMEs production under the co-cultures’ circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blanchette, A. R., Crueler, W. E., Height, D. E., Akhtar, M., & Akin, D. E. (1997). Journal of Biotechnology, 53, 203–213.

    Article  CAS  Google Scholar 

  2. Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., et al. (2005). International Microbiology, 8, 195–204.

    Google Scholar 

  3. Martínez, A. T. (2002). Enzyme and Microbial Technology, 30, 425–444.

    Article  Google Scholar 

  4. Hammel, K. E., & Cullen, D. (2008). Current Opinion in Plant Biology, 11, 349–355.

    Article  CAS  Google Scholar 

  5. Lundell, T. (1993). Ph.D. thesis, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, 1993.

  6. de Jong, E., Field, J. A., & de Bont, J. A. M. (1994). FEMS Microbiology Reviews, 13, 153–187.

    Article  Google Scholar 

  7. Kersten, P., & Cullen, D. (2007). Fungal Genetics and Biology, 44, 77–87.

    Article  CAS  Google Scholar 

  8. Levasseur, A., Piumi, F., Coutinho, P. M., Rancurel, C., Asther, M., Delattre, M., et al. (2008). Fungal Genetics and Biology, 45, 638–645.

    Article  CAS  Google Scholar 

  9. Hatakka, A. (1994). FEMS Microbiology Reviews, 13, 125–135.

    Article  CAS  Google Scholar 

  10. Bouws, H., Wattenberg, A., & Zorn, H. (2008). Applied Microbiology and Biotechnology, 80, 381–388.

    Article  CAS  Google Scholar 

  11. Sundman, V., & Näse, L. (1972). Archives of Microbiology, 4, 339–348.

    Google Scholar 

  12. Asiegbu, F. O., Paterson, A., & Smith, J. E. (1996). World Journal of Microbiology and Biotechnology, 12, 273–279.

    Article  CAS  Google Scholar 

  13. Mai, V., & Morris, J. G. (2004). The Journal of Nutrition, 134, 459–464.

    CAS  Google Scholar 

  14. Belenguer, A., Duncan, S. H., Calder, A. G., Holtrop, G., Louis, P., Lobley, G. E., et al. (2006). Applied and Environmental Microbiology, 72, 3593–3599.

    Article  CAS  Google Scholar 

  15. Bader, J., Mast-Gerlach, E., Popović, M. K., Bajpai, R., & Stahl, U. (2010). Journal of Applied Microbiology, 109, 371–387.

    Article  CAS  Google Scholar 

  16. Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., del Mar Jimenez-Gasco, M., et al. (2008). Proceedings of the National Academy of Sciences, 105, 12932–12937.

    Article  CAS  Google Scholar 

  17. Parani, K., & Eyini, M. (2010). Asian Journal of Experimental Biological Sciences, 1, 352–359.

    CAS  Google Scholar 

  18. Crowe, J. D., & Olsson, S. (2001). Applied and Environmental Microbiology, 67, 2088–2094.

    Article  CAS  Google Scholar 

  19. Baldrian, P. (2004). FEMS Microbiology Ecology, 50, 245–253.

    Article  CAS  Google Scholar 

  20. Velazquez-Cedẽno, M. A., Farnet, A. M., Ferré, E., & Savoie, J. M. (2004). Mycologia, 96, 712–719.

    Article  Google Scholar 

  21. Zhang, H., Hong, Y. Z., Xiao, Y. Z., Yuan, J., Tu, X. M., & Zhang, X. Q. (2006). Applied Microbiology and Biotechnology, 73, 89–94.

    Article  CAS  Google Scholar 

  22. Chi, Y., Hatakka, A., & Maijala, P. (2007). International Biodeterioration and Biodegradation, 59, 32–39.

    Article  CAS  Google Scholar 

  23. Verma, P., & Madamwar, D. (2002). Applied Biochemistry and Biotechnology, 1, 109–118.

    Article  Google Scholar 

  24. Koroleva, O. V., Gavrilova, V. P., Stepanova, E. V., Lebedeva, V. I., et al. (2002). Enzyme and Microbial Technology, 30, 573–580.

    Article  CAS  Google Scholar 

  25. Aguilar, C. N., Gutierrez-Sancez, G., Rado-Barragan, P. A., Rodriguez-Herrera, R., Martinez-Hernandez, J. L., & Contreras-Esquivel, J. C. (2008). American Journal of Biochemistry and Biotechnology, 4, 354–366.

    Article  CAS  Google Scholar 

  26. Hölker, U., & Lenz, J. (2005). Current Opinion in Microbiology, 8, 301–306.

    Article  Google Scholar 

  27. Périé, F. H., & Gold, M. H. (1991). Applied and Environmental Microbiology, 57, 2240–2245.

    Google Scholar 

  28. Lang, E., Gonser, A., & Zadrazil, F. (2000). Journal of Basic Microbiology, 1, 33–39.

    Article  Google Scholar 

  29. Tuomela, M., Oivanen, P., & Hatakka, A. (2002). Soil Biology and Biochemistry, 34, 1613–1620.

    Article  CAS  Google Scholar 

  30. Vares, T., Kalsi, M., & Hatakka, A. (1995). Applied and Environmental Microbiology, 61, 3515–3520.

    CAS  Google Scholar 

  31. Mohorčič, M., Benčina, M., Friedrich, J., & Jerala, R. (2009). Bioresource Technology, 100, 851–858.

    Article  Google Scholar 

  32. Kirk, T. K., Croan, S., Tien, M., Murtagh, K. E., & Farrell, R. E. (1986). Enzyme and Microbial Technology, 8, 27–32.

    Article  CAS  Google Scholar 

  33. Rayner, A. D. M., & Boddy, L. (1988). Advances in Microbial Ecology, 10, 115–166.

    Google Scholar 

  34. Eggert, C., Temp, U., & Eriksson, K. E. (1996). Applied and Environmental Microbiology, 62, 1151–1158.

    CAS  Google Scholar 

  35. Paszczynski, A., Crawford, R. L., & Huynh, V.-B. (1988). In W. A. Wood & S. T. Kellogg (Eds.), Methods in enzymology, vol. 161 (pp. 264–271). New York: Academic.

    Google Scholar 

  36. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  37. White, N. A., & Boddy, L. (1992). FEMS Microbiology Letters, 98, 75–80.

    Article  CAS  Google Scholar 

  38. Henson, J. M., Butler, M. J., & Day, A. W. (1999). Annual Review of Phytopathology, 37, 447–471.

    Article  CAS  Google Scholar 

  39. Boddy, L. (2000). FEMS Microbiology Ecology, 31, 185–194.

    Article  CAS  Google Scholar 

  40. Hammel, K. E., Kapich, A. N., Jensen, K. A., Jr., & Ryan, Z. C. (2002). Enzyme and Microbial Technology, 30, 445–453.

    Article  CAS  Google Scholar 

  41. Keller, L., & Surette, M. G. (2006). Nature Reviews. Microbiology, 4, 249–258.

    Article  CAS  Google Scholar 

  42. Ollikka, P., Harjunpää, T., Palmu, K., Mäntsälä, P., & Suominen, I. (1998). Applied Biochemistry and Biotechnology, 75, 307–321.

    Article  CAS  Google Scholar 

  43. Spadaro, J. T., & Renganathan, V. (1994). Archives of Biochemistry and Biophysics, 312, 301–307.

    Article  CAS  Google Scholar 

  44. Shin, K., Oh, I., & Kim, C. (1997). Applied and Environmental Microbiology, 63, 1744–1748.

    CAS  Google Scholar 

  45. Azmi, W., Sani, R. K., & Banerjee, U. C. (1998). Enzyme and Microbial Technology, 22, 185–191.

    Article  CAS  Google Scholar 

  46. Swamy, J., & Ramsay, J. A. (1999). Enzyme and Microbial Technology, 24, 130–137.

    Article  CAS  Google Scholar 

  47. Iakovlev, A., Olson, Ǻ., Elfstrand, M., & Stenlid, J. (2004). FEMS Microbiology Letters, 241, 79–85.

    Article  CAS  Google Scholar 

  48. Singh Arora, D., & Kumar Sharma, R. (2010). Applied Biochemistry and Biotechnology, 160, 1760–1788.

    Article  Google Scholar 

  49. Arora, D. S., Chander, M., & Gill, P. K. (2002). International Biodeterioration and Biodegradation, 50, 115–120.

    Article  CAS  Google Scholar 

  50. Arora, D. S., & Gill, P. K. (2000). Bioresource Technology, 73, 283–285.

    Article  CAS  Google Scholar 

  51. Hofrichter, M., Scheibner, K., Schneegaß, I., & Fritsche, W. (1998). Applied and Environmental Microbiology, 64, 399–404.

    CAS  Google Scholar 

  52. Kersten, P. J., Tien, M., Kalyanaraman, B., & Kirk, T. K. (1885). The Journal of Biological Chemistry, 260, 2609–2612.

    Google Scholar 

  53. Tinoco, R., Verdin, J., & Vazquez-Duhalt, R. (2007). Journal of Molecular Catalysis. B, Enzymatic, 46, 1–7.

    Article  CAS  Google Scholar 

  54. Hammel, K. E., Jensen, K. A., Jr., Mozuch, M. D., Landucci, L. L., Tien, M., & Pease, E. A. (1993). The Journal of Biological Chemistry, 268, 12274–12281.

    CAS  Google Scholar 

  55. Ryu, K., Kang, J. H., Wang, L., & Lee, E. K. (2008). Journal of Biotechnology, 135, 241–246.

    Article  CAS  Google Scholar 

  56. Hofrichter, M. (2002). Enzyme and Microbial Technology, 30, 454–466.

    Article  CAS  Google Scholar 

  57. Marzullo, L., Cannio, R., Giardina, P., Santini, M. T., & Sannia, G. (1995). The Journal of Biological Chemistry, 270, 3823–3827.

    Article  CAS  Google Scholar 

  58. Dosoretz, C. G., & Grethlein, H. E. (1991). Applied Biochemistry and Biotechnology, 28/29, 253–264.

    Article  Google Scholar 

  59. ten Have, R., & Teunissen, P. J. M. (2001). Chemical Reviews, 101, 3397–3413.

    Article  Google Scholar 

  60. Aust, S. D. (1990). Microbial Ecology, 20, 197–209.

    Article  CAS  Google Scholar 

  61. Jeffries, T. W., Choi, S., & Kirk, T. K. (1991). Applied and Environmental Microbiology, 42, 290–296.

    Google Scholar 

  62. Buswell, J. A., & Odier, E. (1987). Critical Reviews in Biotechnology, 17, 1–60.

    Article  Google Scholar 

  63. Collins, P. J., & Dobson, A. D. W. (1995). Biotechnological Letters, 17, 989–992.

    Article  CAS  Google Scholar 

  64. Kaal, E. E. J., de Jong, E., Field, J. A., & de Jong, E. (1993). Applied and Environmental Microbiology, 59, 4031–4036.

    CAS  Google Scholar 

  65. Holzbaur, E. L. F., Andrawis, A., & Tien, M. (1991). Molecular Industrial Mycology, 8, 197–223.

    CAS  Google Scholar 

  66. Singh, D., & Chen, S. L. (2008). Applied Microbiology and Biotechnology, 81, 399–417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Gerd Unkelbacher (Fraunhofer ICT) for organosolve lignin preparation. This research was supported by the German Federal Ministry of Education and Research (BMBF) (AZ 0315510). The research was also financially granted by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Zibek.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Paired growth and enzyme production based on modified Kirk medium selection (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi-he, C., Krügener, S., Hirth, T. et al. Co-cultured Production of Lignin-Modifying Enzymes with White-Rot Fungi. Appl Biochem Biotechnol 165, 700–718 (2011). https://doi.org/10.1007/s12010-011-9289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9289-9

Keywords

Navigation