Skip to main content
Log in

Effect of Physicochemical Characteristics of Cellulosic Substrates on Enzymatic Hydrolysis by Means of a Multi-Stage Process for Cellobiose Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of two types of cellulose, microcrystalline cellulose and paper pulp, on enzymatic hydrolysis for cellobiose production was investigated. The particle size, the relative crystallinity index and the water retention value were determined for both celluloses. A previously studied multistage hydrolysis process that proved to enhance the cellobiose production was studied with both types of celluloses. The cellobiose yield exhibited a significant improvement (120% for the microcrystalline cellulose and 75% for the paper pulp) with the multistage hydrolysis process compared to continuous hydrolysis. The conversion of cellulose to cellobiose was greater for the microcrystalline cellulose than for the paper pulp. Even with high crystallinity, microcrystalline cellulose achieved the highest cellobiose yield probably due to its highest specific surface area accessible to enzymes and quantity of adsorbed protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smits, G., Coussement, P., & De Leenheer, L. (1993). European Patent EP 0 354 199 B1.

    Google Scholar 

  2. Yamasaki, N., Ibuki, I. and Isaka, K. (2007) Patent Application Publication. US 2007/0207108 A1.

  3. Franklin, K. R., Hopkinson, A., Webb, N. and White, M. S. (2002) Patent WO/2002/032914.

  4. Han, S., Baigude, H., Hattori, K., Yoshida, T., & Uryu, T. (2007). Carbohydrate Polymers, 68(1), 26–34.

    Article  CAS  Google Scholar 

  5. Singer, N. S., Dubois, G. E., & Muller, G. W. (1990). European Patent EP 0 355 138.

    Google Scholar 

  6. Wood, T. M., & McCrae, S. I. (1979). Adv Chem, 181, 181–209.

    Article  Google Scholar 

  7. Walker, L. P., & Wilson, D. B. (1991). Bioresource Technology, 36(1), 3–14.

    Article  CAS  Google Scholar 

  8. Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Biotechnol Progr, 15, 804–816.

    Article  CAS  Google Scholar 

  9. Zhang, Y. H. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  10. Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Carbohydrate Polymers, 79(1), 192–199.

    Article  CAS  Google Scholar 

  11. Vanderghem, C., Boquel, P., Blecker, C., & Paquot, M. (2010). Applied Biochemistry and Biotechnology, 160(8), 2300–2307.

    Article  CAS  Google Scholar 

  12. Van Soest, P. J., & Wine, R. H. (1967). Journal of the Association of Official Analytical Chemists, 50, 50–55.

    Google Scholar 

  13. Ghose, T. K. (1987). Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  14. Adey, B. and Baker, J.(1996) NREL Laboratory analytical procedure. Measurement of cellulases activities. Available from http://www.nrel.gov/biomass/pdfs/42628.pdf. Accessed January 15, 2011.

  15. Siroka, B., Noisterning, M., Griesser, U. J., & Bechtold, T. (2008). Carbohydrate Research, 343, 2194–2199.

    Article  CAS  Google Scholar 

  16. Ryu, D. D. Y., Lee, S. B., Tassinari, T., & Macy, C. (1982). Biotechnology and Bioengineering, 24, 1047–1067.

    Article  CAS  Google Scholar 

  17. Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Yu. (1991). Applied Biochemistry and Biotechnology, 30, 43–59.

    Article  CAS  Google Scholar 

  18. Focher, B., Marzetti, A., Sarto, V., Beltrame, P. L., & Carniti, P. (1984). Journal of Applied Polymer Science, 29(11), 3329–3338.

    Article  CAS  Google Scholar 

  19. Paquot, M., Thonart, P., Jacquemin, P., & Rassel, A. (1981). Holzforschung, 35, 87–93.

    Article  CAS  Google Scholar 

  20. Ogiwara, Y. (1968). Textile Research Journal, 38(9), 885–891.

    Article  CAS  Google Scholar 

  21. Lee, S. B., Shin, H. S., Ryu, D. D. Y., & Mandels, M. (1982). Biotechnology and Bioengineering, 24, 2137–2153.

    Article  CAS  Google Scholar 

  22. Stone, J. E., Scallan, A. M., Donefer, E., & Ahlgren, E. (1969). Advances in Chemistry Series, 95, 219–241.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Walloon Region (TECHNOSE project no. 716757). We thank Ms. Virginie Byttebier for her excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Vanderghem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderghem, C., Jacquet, N., Danthine, S. et al. Effect of Physicochemical Characteristics of Cellulosic Substrates on Enzymatic Hydrolysis by Means of a Multi-Stage Process for Cellobiose Production. Appl Biochem Biotechnol 166, 1423–1432 (2012). https://doi.org/10.1007/s12010-011-9535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9535-1

Keywords

Navigation