Skip to main content
Log in

Polyvinyl Alcohol–Pectin Cryogel Films for Controlled Release of Enrofloxacin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The release of enrofloxacin entrapped in polyvinyl alcohol (PVA) cryogel at pH 5.5 showed a first-order kinetic, releasing 69.7% of the antibiotic after 4.5 h at 37 °C. In order to slow down the fluoroquinolone release rate, high-methoxylated pectin was added into the cryogel (PVA–P). A film containing 1.0% (w/v) HM pectin and 5.0 μg/ml enrofloxacin released only 3.7% of the antibiotic after 4.5 h. Since the FTIR spectrum showed that most of the interactions between PVA–P matrix and enrofloxacin were due to polar groups (carboxylate and amine), a two-layer film system was designed to modulate the releasing rate of the drug. The top film equilibrated with 0.75 or 1.5 M NaCl release up to 41.9% and 89.0% of the enrofloxacin in 4 h, respectively. The release rate of enrofloxacin was found dependent on NaCl concentration in the upper gel layer. The two-layer cryogel system showed attractive features for transcutaneous antibiotic delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kung, K., Riond, J.-L., Wolffram, S., & Wanner, M. (1993). Research in Veterinary Science, 54, 247–248.

    Article  CAS  Google Scholar 

  2. Seedher, N., & Agarwal, P. (2009). Indian J Pharm sci, 71, 82–87.

    Article  Google Scholar 

  3. Maurer, N., Wong, K. F., Hope, M. J., & Cullis, P. R. (1998). Biochimica et Biophysica Acta, 1374, 9–20.

    Article  CAS  Google Scholar 

  4. Jiang, S., Liu, S., & Feng, W. (2011). Journal of the Mechanical Behavior of Biomedical Materials, 4, 1228–1233.

    Article  CAS  Google Scholar 

  5. Hassan, C. M., & Peppas, N. A. (2000). Advances in Polymer Science, 153, 37–65.

    Article  CAS  Google Scholar 

  6. Hassan, C.M., Stewart, J.E., & Peppas, N.A. (2000). European Journal of Pharmaceutics and Biopharmaceutics, 49, 161–165. (ex 8)

    Google Scholar 

  7. Zsivanovits, G., MacDougall, A. J., Smith, A. C., & Ring, S. G. (2004). Carbohydrate Research, 339, 1317–1322.

    Article  CAS  Google Scholar 

  8. Prashantha, K. V. (2001). Bulletin of Material Science, 24, 535–538.

    Article  CAS  Google Scholar 

  9. Yoo, M. K., Sung, Y. K., Lee, Y. M., & Cho, C. S. (2000). Polymer, 41, 5713–5719.

    Article  CAS  Google Scholar 

  10. Hua, S., Ma, H., Li, X., Yang, H., & Wang, A. (2010). International Journal of Biological Macromolecules, 46, 517–523.

    Article  CAS  Google Scholar 

  11. Coffin, D. R., Fishman, M. L., & Trung, V. Ly (1996). Journal of Applied Polymer Sciences, 61, 71–79.

  12. Fishman, M. L., & Coffin, D. R. (1998). Carbohydrate Polymers, 35, 195–203.

    Article  CAS  Google Scholar 

  13. Kaczmarek, H., Browska, A. D., & Vuković-Kwiatkowska, I. (2011). Journal of Applied Polymer Sciences, 122, 1936–1945.

    Article  CAS  Google Scholar 

  14. Nesseem, D. I., & El-Houseny, S. S. (2011). Life Sciences, 89, 430–438.

    Article  CAS  Google Scholar 

  15. Devi, V. K., Saisivam, S., María, G. R., & Deepti, P. U. (2003). Drug Development and Industrial Pharmacy, 29, 495–503.

    Article  CAS  Google Scholar 

  16. Kenawy, E., El-Newehy, M. H., & Al-Deyab, S. (2010). J Saudi Chem Soc, 14, 237–240.

    Article  CAS  Google Scholar 

  17. Lu, S., Ramirez, F., & Anseth, K. (1998). AICHE Journal, 44, 1689–1696.

    Article  CAS  Google Scholar 

  18. Su, X., Kim, B.-S., Kim, S., Hammond, P., & Irvine, D. (2009). ACS Nano, 3, 3719–3729.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Técnica (ANPCyT) of Argentina and Proyecto API Gobierno de La Pampa-UNLPam. We want to thank Dr. Paul Dumas (SMIS beam line, Soleil Synchrotron Facility, France) for his kind support and expertise during the sample analysis. Also, thanks to Mr. Ignacio Pérez de Verti and Dr. Sergio G. Marchetti for the FTIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo. R. Castro.

Additional information

Yanina N. Martinez and Lucrecia Piñuel contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, Y.N., Piñuel, L., Castro, G.R. et al. Polyvinyl Alcohol–Pectin Cryogel Films for Controlled Release of Enrofloxacin. Appl Biochem Biotechnol 167, 1421–1429 (2012). https://doi.org/10.1007/s12010-012-9554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9554-6

Keywords

Navigation