Skip to main content
Log in

Effect of Alkali Pretreatment on the Structural Properties and Enzymatic Hydrolysis of Corn Cob

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An effective alkali pretreatment which affects the structural properties of cellulose (corn cob) has been studied. The pretreatment of corn cob was carried out with different combinations of alkali at varying temperatures. The most effective pretreatment of corn cob was achieved with 1 % alkali at 50 °C in 4 h. The crystallinity index (CrI) and specific surface area (SSA) of untreated corn cob was 39 % and 0.52 m2/g wherein after alkali pretreatment CrI decreased to 15 % and SSA increased to 3.32 m2/g. The fungal organism was identified as Penicillium pinophilum on the basis of ITS sequence. At 5 % substrate concentration using a complete cellulase from Penicillium pinophilum the hydrolysis of untreated corn cob with 5, 10 and 20 FPU/g enzyme loadings were 11 %, 13 % and 16 %, whereas after alkali treatment the hydrolysis increased to 78 %, 90 % and 100 %, respectively. Further hydrolytic potential of commercial cellulases viz. Accellerase™ 1,000, Palkofeel-30 and Palkocel-40 were investigated under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.

    Article  CAS  Google Scholar 

  2. Klemm, D., Schmauder, H. P., & Heinze, T. (2002). Cellulose. In E. J. Vandamme, S. De Baets, & A. Steinbüchel (Eds.), Biopolymers Vol. 6 (pp. 275–319). Weinheim: Wiley-VCH.

    Google Scholar 

  3. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  4. Kim, J., & Yun, S. (2006). Macromolecules, 39, 4202–4206.

    Article  CAS  Google Scholar 

  5. Rajaram, S., & Varma, A. (1990). Applied Microbiology and Biotechnology, 34, 141–144.

    Article  CAS  Google Scholar 

  6. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feed stock for bioenergy and bioproducts industry: The technical feasibility of billion ton annual supply. Oak Ridge: US Department of Energy.

    Book  Google Scholar 

  7. Graham, R. L., Nelson, R., Sheehan, J., Perlack, R. D., & Wright, L. L. (2007). Agronomy Journal, 99, 1–11.

    Article  Google Scholar 

  8. Barl, B., Biliaderis, G. C., Murray, D. E., & Macgregor, W. A. (1991). Journal of the Science of Food and Agriculture, 56, 195–214.

    Article  CAS  Google Scholar 

  9. Chen, M., Xia, L., & Xue, P. (2007). International Biodeterioration & Biodegradation, 59, 5–89.

    Article  Google Scholar 

  10. Miura, S., Arimura, T., Itoda, N., Dwiarti, L., Feng, J. B., Bin, C. H., et al. (2004). Journal of Bioscience and Bioengineering, 97, 153–157.

    CAS  Google Scholar 

  11. Karr, W. E., Gutierrez, C. V., & Kinshita, C. M. (1998). Biomass and Bioenergy, 14, 277–287.

    Article  Google Scholar 

  12. Lau, W. M., & Dale, E. B. (2009). Proceedings of the National Academy of Sciences, 106, 1368–1373.

    Article  CAS  Google Scholar 

  13. Shi, J., Sharma-Shivappa, R. R., Chinn, M., & Howell, N. (2009). Biomass and Bioenergy, 33, 88–96.

    Article  CAS  Google Scholar 

  14. Kim, S., & Holtzapple, M. T. (2005). Bioresource Technology, 96, 1994–2006.

    Article  CAS  Google Scholar 

  15. Mosier, N., Wyman, C. E., Dale, B. E., Elander, R. T., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  16. Wang, Z., Keshwani, D. R., Redding, A. P., & Cheng, J. J. (2010). Bioresource Technology, 101, 3583–3585.

    Article  CAS  Google Scholar 

  17. Singh, R., Varma, A. J., Laxman, R. S., & Rao, M. (2009). Bioresource Technology, 100, 6679–6681.

    Article  CAS  Google Scholar 

  18. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). www.nrel.gov/biomass/pdfs/42618.pdf

  19. Lodhi, M. A., Ye, G. N., Weeden, N. F., & Reisch, B. I. (1994). Plant Molecular Biology Reporter, 12, 6–13.

    Article  CAS  Google Scholar 

  20. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). New York: Academic Press.

    Google Scholar 

  21. Felsenstein, J. (1985). Evolution, 39, 783–791.

    Article  Google Scholar 

  22. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  23. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  24. Ghose, T. K., & Bisaria, V. S. (1987). Pure and Applied Chemistry, 59, 1739–1752.

    Article  CAS  Google Scholar 

  25. Klug, H. P., & Alexender, L. E. (1954). X-ray diffraction procedures for polycrystalline and amorphous materials (2nd ed.). New York: Wily.

    Google Scholar 

  26. Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1962). Textile Research Journal, 29, 786–794.

    Article  Google Scholar 

  27. Carberry, J. J. (1976). Chemical and catalytic reaction engineering. New York: McGraw-Hill.

    Google Scholar 

  28. Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis biotechnology monographs (p. 57). Berlin: Springer.

    Book  Google Scholar 

  29. Tarkov, H., & Feist, W. C. (1969). Advances in Chemistry Series, 95, 197–218.

    Google Scholar 

  30. Gharpuray, M. M., Lee, Y. H., & Fan, L. T. (1983). Biotechnology and Bioengineering, 25, 157–172.

    Article  CAS  Google Scholar 

  31. Thompson, D. N., Chen, H. C., & Grethlein, H. E. (1992). Bioresource Technology, 39, 155–163.

    Article  CAS  Google Scholar 

  32. Park, S., Baker, O. J., Himmel, E. M., Parilla, A. P., & Johnson, A. P. (2010). Biotechnology for Biofuels, 3, 1–10.

    Article  Google Scholar 

  33. Kaar, W. E., & Holtzapple, M. (1998). Biotechnology and Bioengineering, 59, 419–427.

    Article  CAS  Google Scholar 

  34. Hemmatinejad, N., Vahabzadeh, F., & Koredestani, S. S. (2002). Iranian Polymer Journal, 11, 333–338.

    CAS  Google Scholar 

Download references

Acknowledgements

M.R. acknowledges the financial support from CSIR Emeritus scheme. M.R. also acknowledges Vishnu and Dipali for their assistance. The authors are thankful to Drs. Yogesh Souche and Shiv Shankar for their valuable help in molecular identification of the isolate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahare, P., Singh, R., Laxman, R.S. et al. Effect of Alkali Pretreatment on the Structural Properties and Enzymatic Hydrolysis of Corn Cob. Appl Biochem Biotechnol 168, 1806–1819 (2012). https://doi.org/10.1007/s12010-012-9898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9898-y

Keywords

Navigation