Skip to main content
Log in

Distribution of Hydrocarbon-Degrading Bacteria in the Soil Environment and Their Contribution to Bioremediation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 106 cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 107 to 5.0 × 108 cells/g-soil, and the ratio to total bacteria was 0.1–4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wuxing, L., Yongming, L., Ying, T., Zhengao, L., & Lena, Q. M. (2010). Environmental Geochemistry and Health, 32, 23–29.

    Article  Google Scholar 

  2. Hejazi, R. F., Husain, T., & Khan, F. I. (2003). Journal of Hazardous Materials, 99, 287–302.

    Article  CAS  Google Scholar 

  3. Margesin, R., & Schinner, F. (2001). Applied and Environmental Microbiology, 67, 3127–3133.

    Article  CAS  Google Scholar 

  4. Fujii, T., Narikawa, T., Takeda, K., & Kato, J. (2004). Bioscience, Biotechnology, and Biochemistry, 68, 2171–2177.

    Article  CAS  Google Scholar 

  5. Quatrini, P., Scaglione, G., Pasquale, C. D., Riela, S., & Puglia, A. M. (2007). Journal of Applied Microbiology, 104, 251–259.

    Google Scholar 

  6. Piccolo, L. L., Pasquale, C. D., Fodale, R., Puglia, A. M., & Quatrini, P. (2011). Applied and Environmental Microbiology, 77, 1204–1213.

    Article  CAS  Google Scholar 

  7. Kirkwood, K. M., Chernik, P., Foght, J. M., & Gray, M. R. (2008). Biodegradation, 19, 785–794.

    Article  CAS  Google Scholar 

  8. Mao, D., Lookman, R., Diels, L., Weghe, H. V. D., Vanermen, G., Brucker, N. D., et al. (2009). Journal of Chromatography. A, 1216, 1524–1527.

    Article  CAS  Google Scholar 

  9. Kubota, K., Koma, D., Matsumiya, Y., Chung, S. Y., & Kubo, M. (2008). Biodegradation, 19, 749–757.

    Article  CAS  Google Scholar 

  10. Geissdörfer, W., Frosch, S. C., Haspel, G., Ehrt, S., & Hillen, W. (1995). Microbiology, 141, 1425–1432.

    Article  Google Scholar 

  11. van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Röthlisberger, M., & Witholt, B. (2001). Microbiology, 147, 1621–1630.

    Google Scholar 

  12. Wentzel, A., Ellingsen, T. E., Kotlar, H. K., Zotchev, S. B., & Throne-Holst, M. (2007). Applied and Environmental Microbiology, 76, 1209–1221.

    CAS  Google Scholar 

  13. Rojo, F. (2009). Environmental Microbiology, 11, 2477–2490.

    Article  CAS  Google Scholar 

  14. Dutta, T. K., & Harayama, S. (2001). Applied and Environmental Microbiology, 67, 1970–1974.

    Article  CAS  Google Scholar 

  15. Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S. Y., et al. (2003). Bioscience, Biotechnology, and Biochemistry, 67, 1590–1593.

    Article  CAS  Google Scholar 

  16. Hatayama, K., Sakihama, Y., Matsumiya, Y., & Kubo, M. (2008). In J. B. Dominguez (Ed.) Soil contamination research trends. Nova Science, Hauppauge, 143–160.

  17. Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., et al. (1997). Science, 277, 1453–62.

    Article  CAS  Google Scholar 

  18. Aoshima, H., Kimura, A., Shibutani, A., Okada, C., Matsumiya, Y., & Kubo, M. (2006). Applied Microbiology and Biotechnology, 71, 875–880.

    Article  CAS  Google Scholar 

  19. Harayama, S., Kasai, Y., & Hara, A. (2004). Current Opinion in Biotechnology, 15, 205–214.

    Article  CAS  Google Scholar 

  20. Okano, Y., Hristova, K. R., Leutenegger, C. M., Jackson, L. E., Denison, R. F., Gebreyesus, B., et al. (2004). Applied and Environmental Microbiology, 70, 1008–1016.

    Article  CAS  Google Scholar 

  21. Maeda, K., Toyoda, S., Shimojima, R., Osada, T., Hanajima, D., Morioka, R., et al. (2010). Applied and Environmental Microbiology, 76, 1555–1562.

    Article  CAS  Google Scholar 

  22. Long, X., Chen, C., Xu, Z., Oren, R., & He, J. (2012). Soil Biology and Biochemistry, 46, 163–171.

    Article  CAS  Google Scholar 

  23. Haasea, S., Philippotb, L., Neumannc, G., Marhana, S., & Kandelera, E. (2008). Soil Biology and Biochemistry, 40, 1225–1234.

    Article  Google Scholar 

  24. Chapuis-Lardy, L., Brauman, A., Bernard, L., Pablo, A. L., Toucet, J., Mano, M. J., et al. (2010). Applied Soil Ecology, 45, 201–208.

    Article  Google Scholar 

  25. Chen, Z., Liu, J., Wu, M., Xie, X., Wu, J., & Wei, W. (2012). Microbial Ecology, 63, 446–459.

    Article  Google Scholar 

  26. Post-Beittenmiller, D. (1996). Annual Review of Plant Physiology and Plant Molecular Biology, 47, 405–430.

    Article  CAS  Google Scholar 

  27. Schulz, S., Giebler, J., Chatzinotas, A., Wick, L. Y., Fetzer, I., Welzl, G., et al. (2012). The ISME Journal, 17, 1–12.

    Google Scholar 

  28. Filler, D. M., Lindstrom, J. E., Braddock, J. F., Johnson, R. A., & Nickalaski, R. (2001). Cold Regions Science and Technology, 32, 143–156.

    Article  Google Scholar 

  29. Agarry, S. E., Owabor, C. N., & Yusuf, R. O. (2010). Bioremediation Journal, 14, 189–195.

    Article  CAS  Google Scholar 

  30. Hamdi, H., Benzarti, S., Manusadžianas, L., Aoyama, I., & Jedidi, N. (2007). Soil Biology and Biochemistry, 39, 1926–1935.

    Article  CAS  Google Scholar 

  31. Yakubu, B. M., Ma, H., & Zhang, C. (2009). International Journal of Environmental Pollution, 36, 400–410.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoki Kubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuhara, Y., Horii, S., Matsuno, T. et al. Distribution of Hydrocarbon-Degrading Bacteria in the Soil Environment and Their Contribution to Bioremediation. Appl Biochem Biotechnol 170, 329–339 (2013). https://doi.org/10.1007/s12010-013-0170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0170-x

Keywords

Navigation