Skip to main content
Log in

Sorption of Copper(II) and Silver(I) by Four Bacterial Exopolysaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Metal remediation was studied by the sorption of analytical grade copper Cu(II) and silver Ag(I) by four exopolysaccharides (EPS) produced by marine bacteria. Colorimetric analysis showed that these EPS were composed of neutral sugars, uronic acids (>20 %), acetate, and sulfate (29 %). Metal sorption experiments were conducted in batch process. Results showed that the maximum sorption capacities calculated according to Langmuir model were 400 mg g−1 EPS (6.29 mmol g−1) and 333 mg g−1 EPS (3.09 mmol g−1) for Cu(II) and Ag(I), respectively. Optimum pH values of Ag(I) sorption were determined as 5.7. Experiment results also demonstrated the influence of initial silver concentration and EPS concentrations. Microanalyzing coupled with scanning electron microscopy demonstrated the presence of metal and morphological changes of the EPS by the sorption of metallic cations. The Fourier transform infrared spectroscopy analysis indicated possible functional groups (e.g., carboxyl, hydroxyl, and sulfate) of EPS involved in the metal sorption processes. These results showed that EPS from marine bacteria are very promising for copper and silver remediation. Further development in dynamic and continuous process at the industrial scale will be established next.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.

    Article  CAS  Google Scholar 

  2. Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollution, 44, 143–158.

    Article  CAS  Google Scholar 

  3. Ratte, H. T. (2009). Bioaccumulation and toxicity of silver compounds: a review. Environmental Toxicology and Chemistry, 18, 89–108.

    Article  Google Scholar 

  4. Volesky, B. (2007). Biosorption and me. Water Research, 41, 4017–4029.

    Article  CAS  Google Scholar 

  5. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal Chemical Technologies Biotechnologica, 84, 13–28.

    Article  CAS  Google Scholar 

  6. Park, D., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 86–102.

    Article  CAS  Google Scholar 

  7. Vieira, R. H. S. F., & Volesky, B. (2010). Biosorption: a solution to pollution? International Microbiology, 3, 17–24.

    Google Scholar 

  8. Comte, S., Guibaud, G., & Baudu, M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochemistry, 41, 815–823.

    Article  CAS  Google Scholar 

  9. Loaec, M., Olier, R., & Guezennec, J. (1998). Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydrate Polymer, 35, 65–70.

    Article  CAS  Google Scholar 

  10. Loaëc, M., Olier, R., & Guezennec, J. (1997). Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Research, 31, 1171–1179.

    Article  Google Scholar 

  11. Moppert, X., Le Costaouec, T., Raguenes, G., Courtois, A., Simon-Colin, C., Crassous, P., et al. (2009). Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats. Journal India Microbiology Biotechnologica, 36, 599–604.

    Article  CAS  Google Scholar 

  12. Guezennec, J. (2002). Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? Microbiology Biotechnology, 29, 204–208.

    Article  CAS  Google Scholar 

  13. Liu, H., & Fang, H. H. P. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80, 806–811.

    Article  CAS  Google Scholar 

  14. Gadd, G. M., & White, C. (1989). Uptake and intracellular compartmentation of thorium in Saccharomyces cerevisiae. Environmental Pollution, 61, 187–197.

    Article  CAS  Google Scholar 

  15. De Philippis, R., Paperi, R., & Sili, C. (2007). Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation, 18, 181–187.

    Article  CAS  Google Scholar 

  16. Guezennec, J., Moppert, X., Raguènes, G., Richert, L., Costa, B., & Simon-Colin, C. (2011). Microbial mats in French Polynesia and their biotechnological applications. Process Biochemistry, 46, 16–22.

    Article  CAS  Google Scholar 

  17. Raguènes, G., Moppert, X., Richert, L., Ratiskol, J., Payri, C., Costa, B., et al. (2004). A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a kopara mat located in Rangiroa, an atoll of French Polynesia. Current Microbiology, 49, 145–151.

    Article  Google Scholar 

  18. Guezennec, J. G., Pignet, P., Raguenès, G., Deslandes, E., Lijour, Y., & Gentric, E. (1994). Preliminary chemical characterization of unusual eubacterial exopolysaccharides of deep-sea origin. Carbohydrate Polymers, 24, 287–294.

    Article  CAS  Google Scholar 

  19. Lijour, Y., Gentric, E., Deslandes, E., & Guezennec, J. (1994). Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Analytical Biochemistry, 220, 244–248.

    Article  CAS  Google Scholar 

  20. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Chemistry Sociology, 40, 1361–1403.

    Article  CAS  Google Scholar 

  21. Aksu, Z. (2002). Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(-II) ions onto Chlorella vulgaris. Process Biochemistry, 38(1), 89–99.

    Article  CAS  Google Scholar 

  22. De Philippis, R., Sili, C., Paperi, R., & Vincenzini, M. (2001). Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. Phycologica, 13, 293–299.

    Google Scholar 

  23. Moreno, J., Vargas, M., Madiedo, J. M., Muñoz, J., Rivas, J., & Guerrero, M. G. (2000). Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnology and Bioengineering, 67, 283–290.

    Article  CAS  Google Scholar 

  24. Shah, V., Ray, A., Garg, N., & Madamwar, D. (2000). Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions. Current Microbiology, 40, 274–278.

    Article  CAS  Google Scholar 

  25. Guibaud, G., Tixier, N., Bouju, A., & Baudu, M. (2003). Relation between extracellular polymers’ composition and its ability to complex Cd. Cu and Pb, Chemosphere, 52, 1701–1710.

    Article  CAS  Google Scholar 

  26. Pulsawat, W., Leksawasdi, N., Rogers, P. L., & Foster, L. J. R. (2003). Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnology Letters, 25, 1267–1270.

    Article  CAS  Google Scholar 

  27. Paperi, R., Micheletti, E., & De Philippis, R. (2006). Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. Microbiology, 101, 1351–1356.

    CAS  Google Scholar 

  28. Prado Acosta, M., Valdman, E., Leite, S. G. F., Battaglini, F., & Ruzal, S. M. (2005). Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. Microbiology Biotechnol, 21, 1157–1163.

    Article  CAS  Google Scholar 

  29. Veglio, F., Beolchini, F., & Gasbarro, A. (1997). Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochemistry, 32, 99–105.

    Article  CAS  Google Scholar 

  30. Donia, A. M., Atia, A. A., & Elwakeel, K. Z. (2007). Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 87, 197–206.

    Article  CAS  Google Scholar 

  31. Esposito, A., Pagnanelli, F., & Veglio, F. (2002). pH-related equilibria models for biosorption in single metal systems. Chemical Engineering Science, 57, 307–313.

    Article  CAS  Google Scholar 

  32. Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90, 71–74.

    Article  CAS  Google Scholar 

  33. Singleton, I., & Simmons, P. (1996). Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. Technology Biotechnol, 65, 21–28.

    Article  CAS  Google Scholar 

  34. Pons, M. P., & Fuste, M. C. (1993). Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Applied Microbiology and Biotechnology, 39, 661–665.

    Article  CAS  Google Scholar 

  35. Ozdemir, G., Ceyhan, N., & Manav, E. (2005). Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresource Technologies, 96, 1677–1682.

    Article  CAS  Google Scholar 

  36. Sethuraman, P., & Balasubramanian, N. (2010). Removal of Cr (VI) from aqueous solution using Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae. International Journal of Engineering, Science and Technology, 2, 1811–1825.

    Google Scholar 

  37. Onwuka, J. C., Ajibola, V. O., Kagbu, J. A., & Manji, A. J. (2011). Biosorption of Cr(VI) and Co(II) ions from synthetic wastewater using dead biomass of fresh water green algae Cosmarium panamense. Archaves Applied Science Reseach, 3, 191–207.

    CAS  Google Scholar 

  38. Geddie, J. L., & Sutherland, I. W. (1993). Uptake of metals by bacterial polysaccharides. Journal of Applied Microbiology, 74, 467–472.

    Article  CAS  Google Scholar 

  39. Sheng, P. X., Ting, Y. P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Science, 275, 131–141.

    CAS  Google Scholar 

  40. Figueira, M. M., Volesky, B., & Mathieu, H. J. (1999). Instrumental analysis study of iron species biosorption by Sargassum biomass. Environmental Science and Technology, 33, 1840–1846.

    Article  CAS  Google Scholar 

  41. Lin, Z., Zhou, C., Wu, J., Zhou, J., & Wang, L. (2005). A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta Adriatica, 61, 1195–1200.

    Article  Google Scholar 

  42. Pethkar, A. V., Kulkarni, S. K., & Paknikar, K. M. (2001). Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresource Technology, 80, 211–215.

    Article  CAS  Google Scholar 

  43. Morillo Pérez, J. A., Garcia-Ribera, R., Quesada, T., Aguilera, M., Ramos-Cormenzana, A., & Monteoliva-Sanchez, M. (2008). Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. Microbiology Biotechnology, 24, 2699–2704.

    Article  Google Scholar 

  44. Norberg, A. B., & Persson, H. (1984). Accumulation of heavy metal ions by Zoogloea ramigera. Biotechnology and Bioengineering, 26, 239–246.

    Article  CAS  Google Scholar 

  45. Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37, 4231–4235.

    Article  CAS  Google Scholar 

  46. Grimm, A., Zanzi, R., Björnbom, E., & Cukierman, A. L. (2008). Comparison of different types of biomasses for copper biosorption. Bioresource Technology, 99, 2559–2565.

    Article  CAS  Google Scholar 

  47. Padilha, F. P., de França, F. P., & da Costa, A. C. A. (2005). The use of waste biomass of Sargassum sp. for the biosorption of copper from simulated semiconductor effluents. Bioresource Technology, 96, 1511–1517.

    Article  CAS  Google Scholar 

  48. Mattuschka, B., & Straube, G. (1993). Biosorption of metals by a waste biomass. Technology Biotechnology, 58, 57–63.

    Article  CAS  Google Scholar 

  49. Dos Santos, V. C. G., De Souza, J. V. T. M., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2010). Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water Air Soil Pollution, 1–9.

  50. Akthar, N., Sastry, S., & Mohan, M. (1995). Biosorption of silver ions by processed Aspergillus niger biomass. Biotechnology Letters, 17, 551–556.

    Article  CAS  Google Scholar 

  51. Cordery, J., Wills, A. J., Atkinson, K., & Wills, B. A. (1994). Extraction and recovery of silver from low-grade liquors using microalgae. Minerals Engineering, 7, 1003–1015.

    Article  CAS  Google Scholar 

  52. Merroun, M. L., Omar, N. B., Alonso, E., Arias, J. M., & Gonzalez-Munoz, M. T. (2001). Silver sorption to Myxococcus xanthus biomass. Geomicrobiology Journal, 18, 183–192.

    Article  CAS  Google Scholar 

  53. Tsezos, M., Remoudaki, E., & Angelatou, V. (1995). A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. International Biodeterioration and Biodegradation, 35, 129–153.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to Mexel Industries SAS for the financial support and Ifremer for the facilities. The authors are thankful to Prof. G. Geesey for providing EPS M2. We also thank Mr. N. Gayet from REM/EEP/LEP Ifremer Brest Center for his skilled assistance with SEM and Mrs. C. Liorzou from UMR 6538 Domaines Océaniques IUEM for metal analysis on ICP-AES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deschatre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschatre, M., Ghillebaert, F., Guezennec, J. et al. Sorption of Copper(II) and Silver(I) by Four Bacterial Exopolysaccharides. Appl Biochem Biotechnol 171, 1313–1327 (2013). https://doi.org/10.1007/s12010-013-0343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0343-7

Keywords

Navigation