Skip to main content
Log in

Cold-Active Xylanase Produced by Fungi Associated with Antarctic Marine Sponges

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite their potential biotechnological applications, cold-active xylanolytic enzymes have been poorly studied. In this work, 38 fungi isolated from marine sponges collected in King George Island, Antarctica, were screened as new sources of cold-active xylanases. All of them showed xylanase activity at 15 and 23 °C in semiquantitative plate assays. One of these isolates, Cladosporium sp., showed the highest activity and was characterized in detail. Cladosporium sp. showed higher xylanolytic activity when grown on beechwood or birchwood xylan and wheat bran, but wheat straw and oat bran were not so good inducers of this activity. The optimal pH for xylanase activity was 6.0, although pH stability was slightly wider (pH 5–7). On the other hand, Cladosporium sp. showed high xylanase activity at low temperatures and very low thermal stability. Interestingly, thermal stability was even lower after culture media were removed and replaced by buffer, suggesting that low molecular component(s) of the culture media could be important in the stabilization of cold-active xylanase activity. To the best of our knowledge, this study is the first report on extracellular xylanase production by fungi associated with Antarctic marine sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou, J., Huang, H., Meng, K., Shi, P., Wang, Y., Luo, H., et al. (2009). Applied Microbiology and Biotechnology, 85, 323–333.

    Article  CAS  Google Scholar 

  2. Chávez, R., Bull, P., & Eyzaguirre, J. (2006). Journal of Biotechnology, 123, 413–433.

    Google Scholar 

  3. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  4. Juturu, V., & Wu, J. C. (2012). Biotechnology Advances, 30, 1219–1227.

    Article  CAS  Google Scholar 

  5. Zhou, P., Zhu, H., Yan, Q., Katrolia, P., & Jiang, Z. (2011). Applied Biochemistry and Biotechnology, 164, 944–956.

    Article  CAS  Google Scholar 

  6. Bradner, J. R., Gillings, M., & Nevalainen, K. M. H. (1999). World Journal of Microbiology and Biotechnology, 15, 131–132.

    Article  Google Scholar 

  7. Bradner, J. R., Sidhu, R. K., Gillings, M., & Nevalainen, K. M. H. (1999). Journal of Applied Microbiology, 878, 366–370.

    Article  Google Scholar 

  8. Collins, T., Meuwis, M.-A., Stals, I., Claeyssens, M., Feller, G., & Gerday, C. (2002). Journal of Biological Chemistry, 277, 35133–35139.

    Article  CAS  Google Scholar 

  9. Ávila, C., Taboada, S., & Núñez-Pons, L. (2007). Marine Ecology, 29, 1–71.

    Article  Google Scholar 

  10. Henríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., et al. (2013). World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-013-1418-x.

    Google Scholar 

  11. Zhou, J., Dong, Y., Tang, X., Li, J., Xu, B., Wu, Q., et al. (2012). Journal of Microbiology and Biotechnology, 22, 501–509.

    Article  CAS  Google Scholar 

  12. de García, V., Brizzio, S., Libkind, D., Buzzini, P., & van Broock, M. (2007). FEMS Microbiology Ecology, 59, 331–341.

    Article  Google Scholar 

  13. Bailey, M. J., Biely, P., & Poutanen, K. (2002). Journal of Biotechnology, 23, 257–270.

    Article  Google Scholar 

  14. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. EI-Morsy, E. I. S. M. (2000). Fungal Diversity, 5, 43–54.

    Google Scholar 

  16. Hong, J.-Y., Kim, Y.-H., Jung, M.-H., Jo, C.-W., & Choi, J.-E. (2011). Mycobiology, 39, 306–309.

    Article  CAS  Google Scholar 

  17. Chiranjeevi, T., Baby Rani, G., Chandel, A. K., Satish Sekhar, P. V., Prakasham, R. S., & Addepally, U. (2012). Journal of Biobased Materials and Bioenergy, 6, 1–10.

    Article  Google Scholar 

  18. Knob, A., & Carmona, E. (2008). World Applied Sciences Journal, 4, 277–283.

    Google Scholar 

  19. Medeiros, R. G., Coelho, L. A., & Filho, E. X. F. (2008). Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 2, 30–33.

    Google Scholar 

  20. Xiong, H. (2004). PhD thesis, Helsinki University of Technology, Espoo, Finland.

  21. Rose, D., & Inglett, G. (2011). Food Analytical Methods, 4, 66–72.

    Article  Google Scholar 

  22. Mahamud, M. R., & Gomes, D. J. (2012). Journal of Scientific Research, 4, 227–238.

    CAS  Google Scholar 

  23. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  24. Gomes, J., Gomes, I., & Steiner, W. (2000). Extremophiles, 4, 227–235.

    Article  CAS  Google Scholar 

  25. Hou, Y.-H., Wang, T.-H., Long, H., & Zhu, H. Y. (2006). Acta Biochimica et Biophysica Sinica, 38, 142–149.

    Article  CAS  Google Scholar 

  26. Iyer, P. V., & Ananthanarayan, L. (2008). Process Biochemistry, 43, 1019–1032.

    Article  CAS  Google Scholar 

  27. Abou-Hachem, M., Olsson, F., & Karlsson, E. N. (2003). Extremophiles, 7, 483–491.

    Article  CAS  Google Scholar 

  28. You, C., Yuan, H., Huang, Q., & Lu, H. (2010). African Journal of Biotechnology, 9, 1288–1294.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Instituto Antártico Chileno project INACH G_06-10 and DICYT-USACH (R.C.), FONDECYT grant 11090192 and “Programa Bicentenario de Ciencia y Tecnología” (Chile) project PDA13 (I.V.), FONDECYT grants 1100084 and 1130180 (J.E.), and FONDECYT Postdoctoral Fellowship 3120032 (M.-C. R.).We thank Braulio Paillavil for excellent technical assistance. A. D.-C. thanks Programa de Excelencia Académica IFARHU-MEF (Gobierno de Panamá).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Chávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del-Cid, A., Ubilla, P., Ravanal, MC. et al. Cold-Active Xylanase Produced by Fungi Associated with Antarctic Marine Sponges. Appl Biochem Biotechnol 172, 524–532 (2014). https://doi.org/10.1007/s12010-013-0551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0551-1

Keywords

Navigation