Skip to main content
Log in

Use of Spectroscopic and Imaging Techniques to Evaluate Pretreated Sugarcane Bagasse as a Substrate for Cellulase Production Under Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzymatic cocktail of cellulases is one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels and other chemicals. Here, the influence of liquid hot water, dilute acid, alkali, and combined acid/alkali pretreatments on sugarcane bagasse (SCB) used for cellulase production was investigated by means of spectroscopic and imaging techniques. Chemical composition and structural characteristics, such as crystallinity (determined by X-ray diffraction), functional groups (Fourier transform infrared spectroscopy), and microstructure (scanning electron microscopy), were used to correlate SCB pretreatments with enzymatic biosynthesis by a strain of the filamentous fungus Aspergillus niger under solid-state fermentation. The combined acid/alkali pretreatment resulted in a SCB with higher cellulose content (86.7 %). However, the high crystallinity (74 %) of the resulting biomass was detrimental to microbial uptake and enzyme production. SCB pretreated with liquid hot water yielded the highest filter paper cellulase (FPase), carboxymethyl cellulase (CMCase), and xylanase activities (0.4, 14.9, and 26.1 U g−1, respectively). The results showed that a suitable pretreatment for SCB to be used as a substrate for cellulase production should avoid severe conditions in order to preserve amorphous cellulose and to enhance the physical properties that assist microbial access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. CONAB (Companhia Nacional de Abastecimento) (2013) Acompanhamento de safra brasileira: cana-de-açúcar, terceiro levantamento, janeiro/2013 ed.

  2. Leite, R. C. D., Leal, M. R. L. V., Cortez, L. A. B., Griffin, W. M., & Scandiffio, M. I. G. (2009). Can Brazil replace 5 % of the 2025 gasoline world demand with ethanol? Energy, 34, 655–661.

    Article  CAS  Google Scholar 

  3. Macedo, I. C., Seabra, J. E. A., & Silva, J. E. A. R. (2008). Greenhouse gases emissions in the production, use of ethanol from sugarcane in Brazil: the 2005/2006 averages, a prediction for 2020. Biomass Bioenerg, 32, 582–595.

    Article  CAS  Google Scholar 

  4. Seabra, J. E. A., Tao, L., Chum, H. L., & Macedo, I. C. (2010). A techno-economic evaluation of the effects of centralized cellulosic ethanol, co-products refinery options with sugarcane mill clustering. Biomass Bioenerg, 34, 1065–1078.

    Article  CAS  Google Scholar 

  5. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol, 101, 4851–4861.

    Article  CAS  Google Scholar 

  6. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening, selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  7. Rodríguez-Couto, S., & Sanromán, M. A. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 22, 211–219.

    Article  CAS  Google Scholar 

  8. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol, 96, 673–686.

    Article  CAS  Google Scholar 

  9. Yang, B., & Wyman, C. E. (2009). Dilute acid, autohydrolysis pretreatment. Methods. Molecular Biology, 581, 103–114.

    CAS  Google Scholar 

  10. Hernandez-Salas, J. M., Villa-Ramirez, M. S., Veloz-Rendon, J. S., Rivera-Hernandez, K. N., Gonzalez-Cesar, R. A., Plascencia-Espinosa, M. A., & Trejo-Estrada, S. R. (2009). Comparative hydrolysis, fermentation of sugarcane, agave bagasse. Bioresource Technol, 100, 1238–1245.

    Article  CAS  Google Scholar 

  11. Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Physical, chemical characterizations of corn stover, poplar solids resulting from leading pretreatment technologies. Bioresource Technol, 100, 3948–3962.

    Article  CAS  Google Scholar 

  12. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  13. Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulase, biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technol, 57, 13–18.

    Article  CAS  Google Scholar 

  14. Boussarsar, H., Roge, B., & Mathlouthi, M. (2009). Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresource Technol, 100, 6537–6542.

    Article  CAS  Google Scholar 

  15. Cardona, C. A., Quintero, J. A., & Paz, I. C. (2010). Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource Technol, 101, 4754–4766.

    Article  CAS  Google Scholar 

  16. Dias, M. O. S., Cunha, M. P., Jesus, C. D. F., Scandiffio, M. I. G., Rossell, C. E. V., Filho, M., & Bonomi, A. (2010). Simulation of ethanol production from sugarcane in Brazil: economic study of an autonomous distillery. Comput Aided Chem Eng, 28, 733–738.

    Article  CAS  Google Scholar 

  17. Rocha, G. J. D., Martin, C., Soares, I. B., Maior, A. M. S., Baudel, H. M., & de Abreu, C. A. M. (2011). Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenerg, 35, 663–670.

    Article  CAS  Google Scholar 

  18. Singhania, R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement, comparative profiles in the production technologies using solid-state, submerged fermentation for microbial cellulases. Enzyme Microb Tech, 46, 541–549.

    Article  CAS  Google Scholar 

  19. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., Emalfarb, M., Baez, M., & Sinitsyn, A. P. (2007). Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 97, 1028–1038.

    Article  CAS  Google Scholar 

  20. Sukumaran, R. K., Singhania, R. R., Mathew, G. M., & Pandey, A. (2009). Cellulase production using biomass feed stock, its application in lignocellulose saccharification for bio-ethanol production. Renew Energ, 34, 421–424.

    Article  CAS  Google Scholar 

  21. Bhargav, S., Panda, B. P., Ali, M., & Javed, S. (2008). Solid-state fermentation: an overview. Chemical and Biochemical Engineering Quarterly, 22, 49–70.

    CAS  Google Scholar 

  22. Raghavarao, K. S. M. S., Ranganathan, T. V., & Karanth, N. G. (2003). Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 13, 127–135.

    Article  CAS  Google Scholar 

  23. Couri, S., & de Farias, A. X. (1995). Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes. Revista de Microbiologia, 26, 314–317.

    CAS  Google Scholar 

  24. Mandels, M., & Weber, J. (1969). Production of cellulases. Advances in Chemistry Series, 95, 391–414.

    Article  CAS  Google Scholar 

  25. Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous foods II A rapid method for the determination of fibre, lignin. Journal of the Association of Official Analytical Chemists, 46, 829–835.

    Google Scholar 

  26. Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses, apparatus, reagents, procedures, some applications. Washington: USDA, Agricultural handbook.

    Google Scholar 

  27. AOAC. (1980). Official methods of analysis. Washington: AOAC.

    Google Scholar 

  28. Isogai, A., & Usuda, M. (1990). Crystallinity indexes of cellulosic materials. Sen'i Gakkaishi, 46, 324–329.

    Article  CAS  Google Scholar 

  29. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  30. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  31. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  32. Adsul, M. G., Ghule, J. E., Singh, R., Shaikh, H., Bastawde, K. B., Gokhale, D. V., & Varma, A. J. (2004). Polysaccharides from bagasse: applications in cellulase, xylanase production. Carbohyd Polym, 57, 67–72.

    Article  CAS  Google Scholar 

  33. Singh, R., Varma, A. J., Laxman, R. S., & Rao, M. (2009). Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresource Technol, 100, 6679–6681.

    Article  CAS  Google Scholar 

  34. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol, 100, 10–18.

    Article  CAS  Google Scholar 

  35. Grethlein, H. E. (1985). The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nature Biotechnology, 3, 155–160.

    Article  CAS  Google Scholar 

  36. Zhang, J. A., Wang, X. S., Chu, D. Q., He, Y. Q., & Bao, J. (2011). Dry pretreatment of lignocellulose with extremely low steam, water usage for bioethanol production. Bioresource Technol, 102, 4480–4488.

    Article  CAS  Google Scholar 

  37. Canilha, L., Santos, V. T. O., Rocha, G. J. M., Silva JB, A. E., Giulietti, M., Silva, S. S., Felipe, M. G. A., Ferraz, A., Milagres, A. M. F., & Carvalho, W. A. (2011). A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biot, 38, 1–9.

    Article  CAS  Google Scholar 

  38. Zhao, H. B., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd Polym, 68, 235–241.

    Article  CAS  Google Scholar 

  39. Li, J. B., Henriksson, G., & Gellerstedt, G. (2007). Lignin depolymerization/repolymerization, its critical role for delignification of aspen wood by steam explosion. Bioresource Technol, 98, 3061–3068.

    Article  CAS  Google Scholar 

  40. Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008). Visualizing lignin coalescence, migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101, 913–925.

    Article  CAS  Google Scholar 

  41. Sun, R. C., Sun, X. F., Fowler, P., & Tomkinson, J. (2002). Structural, physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. European Polymer Journal, 38, 1399–1407.

    Article  CAS  Google Scholar 

  42. Xu, Z., Wang, Q., Jiang, Z., Yang, X., & Ji, Y. (2007). Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenerg, 31, 162–167.

    Article  CAS  Google Scholar 

  43. Gabhane, J., Prince William, S. P. M., Vaidya, A. N., Mahapatra, K., & Chakrabarti, T. (2011). Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenerg, 35, 96–102.

    Article  CAS  Google Scholar 

  44. Hansen, M. A. T., Kristensen, J. B., Felby, C., & Jorgensen, H. (2010). Pretreatment, enzymatic hydrolysis of wheat straw (Triticum aestivum L.)—the impact of lignin relocation, plant tissues on enzymatic accessibility. Bioresource Technol, 102, 2804–2811.

    Article  CAS  Google Scholar 

  45. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer, sustainable raw material. Angewandte Chemie, International Edition, 44, 3358–3393.

    Article  CAS  Google Scholar 

  46. Bahng, M. K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: a review. Analytica Chimica Acta, 651, 117–138.

    Article  CAS  Google Scholar 

  47. Kristensen, J. B., Thygesen, L. G., Felby, C., Jorgensen, H., & Elder, T. (2008). Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology for Biofuels, 1, 5.

    Article  CAS  Google Scholar 

  48. Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood, cellulose. Vibrational Spectroscopy, 36, 23–40.

    Article  CAS  Google Scholar 

  49. Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties, enzymatic hydrolysis. Bioresource Technol, 101, 4907–4913.

    Article  CAS  Google Scholar 

  50. Himmelsbach, D. S., Khalili, S., & Akin, D. E. (2002). The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agr, 82, 685–696.

    Article  CAS  Google Scholar 

  51. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals, biotechnology. Microbiol Mol Biol R, 66, 506–577.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Embrapa, CNPq, and Finep (all from Brazil) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ursula Fabiola Rodríguez-Zúñiga or Cristiane Sanchez Farinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Zúñiga, U.F., Neto, V.B., Couri, S. et al. Use of Spectroscopic and Imaging Techniques to Evaluate Pretreated Sugarcane Bagasse as a Substrate for Cellulase Production Under Solid-State Fermentation. Appl Biochem Biotechnol 172, 2348–2362 (2014). https://doi.org/10.1007/s12010-013-0678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0678-0

Keywords

Navigation