Skip to main content
Log in

Enhancement of Dibenzothiophene Desulfurization by Gordonia alkanivorans Strain 1B Using Sugar Beet Molasses as Alternative Carbon Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

There are several problems limiting an industrial application of fossil fuel biodesulfurization, and one of them is the cost of culture media used to grow the microorganisms involved in the process. In this context, the utilization of alternative carbon sources resulting from agro-industrial by-products could be a strategy to reduce the investment in the operating expenses of a future industrial application. Recently, Gordonia alkanivorans 1B was described as a fructophilic desulfurizing bacterium, and this characteristic opens a new interest in alternative carbon sources rich in fructose. Thus, the goal of this study was to evaluate the utilization of sugar beet molasses (SBM) in the dibenzothiophene (DBT) desulfurization process using strain 1B. SBM firstly treated with 0.25 % BaCl2 (w/v) was used after sucrose acidic hydrolysis or in a simultaneous saccharification and fermentation process with a Zygosaccharomyces bailii Talf1 invertase (1 %), showing promising results. In optimal conditions, strain 1B presented a μ max of 0.0795 h−1, and all DBT was converted to 2-hydroxybiphenyl (250 μM) within 48 h with a maximum production rate of 7.78 μM h−1. Our results showed the high potential of SBM to be used in a future industrial fossil fuel biodesulfurization process using strain 1B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borgne, L. S., & Quintero, R. (2003). Fuel Processing Technology, 81, 155–169.

    Article  CAS  Google Scholar 

  2. Srivastava, V. C. (2012). Royal Society of Chemistry Advances, 2, 759–783.

    Google Scholar 

  3. Folsom, B. R., Schieche, D. R., DiGrazia, P. M., Werner, J., & Palmer, S. (1999). Applied and Environmental Microbiology, 65, 4967–4972.

    CAS  Google Scholar 

  4. Alves, L., Marques, S., Matos, J., Tenreiro, R., & Gírio, F. M. (2008). Chemosphere, 70, 967–973.

    Article  CAS  Google Scholar 

  5. Mužic, M., & Sertić-Bionda, K. (2013). Chemical and Biochemical Engineering Quarterly, 11, 101–108.

    Google Scholar 

  6. Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Gírio, F. M. (2005). Applied Biochemistry and Biotechnology, 120, 199–208.

    Article  CAS  Google Scholar 

  7. Alves, L., & Paixão, S. M. (2014). New Biotechnology, 31, 73–79.

    Article  CAS  Google Scholar 

  8. Silva, T. P., Paixão, S. M., Teixeira, A. V., Roseiro, J. C., & Alves, L. (2013). Journal of Chemical Technology and Biotechnology, 88, 919–923.

    Article  CAS  Google Scholar 

  9. Paixão, S. M., Teixeira, P. D., Silva, T. P., Teixeira, A. V., & Alves, L. (2013). New Biotechnology, 30, 598–606.

    Article  CAS  Google Scholar 

  10. Aggarwal, S., Karimi, I. A., & Ivan, G. R. (2013). Molecular BioSystems, 9, 2530–2540.

    Article  CAS  Google Scholar 

  11. Drzyzga, O. (2012). Critical Reviews in Microbiology, 38, 300–316.

    Article  CAS  Google Scholar 

  12. Wu, X., Lin, H., & Zhu, J. (2013). Bioresource Technology, 136, 351–359.

    Article  CAS  Google Scholar 

  13. Kasavi, C., Finore, I., Lama, L., Nicolaus, B., Oliver, S. G., Oner, E. T., et al. (2012). Biomass and Bioenergy, 45, 230–238.

    Article  CAS  Google Scholar 

  14. Taskin, M., Esim, N., & Ortucu, S. (2012). Food and Bioproducts Processing, 90, 773–779.

    Article  CAS  Google Scholar 

  15. Yang, T., Rao, Z., Zhang, X., Xu, M., Xu, Z., & Yang, S. (2013). Applied Microbiology and Biotechnology, 97, 7651–7658.

    Article  CAS  Google Scholar 

  16. Mohebali, G., Ball, A. S., Kaytash, A., & Rasek, B. (2008). Microbiology, 154, 878–885.

    Article  CAS  Google Scholar 

  17. Kim, Y. J., Chang, J. H., Cho, K.-S., Ryu, H. W., & Chang, Y. K. (2004). Korean Journal of Chemical Engineering, 21, 436–441.

    Article  CAS  Google Scholar 

  18. Aminsefat, A., Rasekh, B., & Ardakani, M. R. (2012). Microbiology, 81, 154–159.

    Article  CAS  Google Scholar 

  19. Chang, J. H., Chang, Y. K., Cho, K.-S., & Chang, H. N. (2000). Biotechnology Letters, 22, 193–196.

    Article  CAS  Google Scholar 

  20. Rhee, S., Chang, J. H., Chang, Y. K., & Chang, H. N. (1998). Applied and Environmental Microbiology, 64, 2327–2331.

    CAS  Google Scholar 

  21. Peng, Y., & Wen, J. (2010). Chemical and Biochemical Engineering Quarterly, 24, 85–94.

    CAS  Google Scholar 

  22. Mohebali, G., Ball, A. S., Rasekh, B., & Kaytash, A. (2007). Enzyme and Microbial Technology, 40, 578–584.

    Article  CAS  Google Scholar 

  23. Jia, X., Wen, J. P., Sun, Z. P., Caiyin, Q. G., & Xie, S. P. (2006). Chemical Engineering Science, 61, 1987–2000.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was financed by FEDER funds through POFC-COMPETE and by national funds through FCT (Fundação para a Ciência e a Tecnologia) in the scope of project Carbon4Desulf—FCOMP-01-0124-FEDER-013932 (Ex—PTDC/AAC-AMB/112841/2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luís Alves or Susana M. Paixão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, L., Paixão, S.M. Enhancement of Dibenzothiophene Desulfurization by Gordonia alkanivorans Strain 1B Using Sugar Beet Molasses as Alternative Carbon Source. Appl Biochem Biotechnol 172, 3297–3305 (2014). https://doi.org/10.1007/s12010-014-0763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0763-z

Keywords

Navigation