Skip to main content
Log in

Evaluation of the Anaerobic Co-Digestion of Sewage Sludge and Tomato Waste at Mesophilic Temperature

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sewage sludge is a hazardous waste, which must be managed adequately. Mesophilic anaerobic digestion is a widely employed treatment for sewage sludge involving several disadvantages such as low methane yield, poor biodegradability, and nutrient imbalance. Tomato waste was proposed as an easily biodegradable co-substrate to increase the viability of the process in a centralized system. The mixture proportion of sewage sludge and tomato waste evaluated was 95:5 (wet weight), respectively. The stability was maintained within correct parameters in an organic loading rate from 0.4 to 2.2 kg total volatile solids (VS)/m3 day. Moreover, the methane yield coefficient was 159 l/kg VS (0 °C, 1 atm), and the studied mixture showed a high anaerobic biodegradability of 95 % (in VS). Although the ammonia concentration increased until 1,864 ± 23 mg/l, no inhibition phenomenon was determined in the stability variables, methane yield, or kinetics parameters studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vall, M.P. (2001). Waste water in European countries. Statistics in Focus: Environment and Energy, 14, 8–14.

  2. Wieland, U. (2003). Water use and waste water treatment in the EU and in Candidate Countries. Statistics in Focus: Environment and Energy, 13, 8–13.

    Google Scholar 

  3. Hendrickx, T. L. G., Elissen, H. J. H., & Buisman, C. J. N. (2009). Bioresource Technology, 100, 4642–4648.

    Article  CAS  Google Scholar 

  4. Council Directive of 26 April 1999 on the landfill use of waste. (Directive 1999/31/EC). Council of the European Communities.

  5. Council Directive of 4 December 2000 on the incineration and the co-incineration of industrial and municipal solid waste (Directive 2000/76/EEC). Council of the European Communities.

  6. EUROSTAT (2013) http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&plugin=0&language=en&pcode=ten00034. Accesed 05/17/2013.

  7. Koroneos, C. J., & Nanaki, E. A. (2012). Integrated solid waste management and energy production -- a life cycle assessment approach: The case study of the city of Thessaloniki. Journal of Cleaner Production, 27, 141–150.

    Google Scholar 

  8. Deng, W., Yan, J., Li, X., Wang, F., Chi, Y., & Lu, S. (2009). Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge. Journal of Environmental Sciences, 21, 1747–1752.

    Google Scholar 

  9. Dean, R. B., & Suess, M. J. (1985). The risk to health of chemicals in sewage sludge applied to land. Waste Management and Research, 3(25), 1–278.

    Google Scholar 

  10. Staton, K.L., Alleman, J.E., Pressley, R.L., & Eloff, J. (2001). 2nd Generation Autothermal Thermophilic Aerobic Digestion: Conceptual Issues and Process Advancements. WEF/AWWA/CWEA joint residuals and biosolids management conference biosolids 2001: Building public support.

  11. Iacovidou, E., Ohandja, D. G., & Voulvoulis, N. (2012). Food waste codigestion with sewage sludge-realising its potential in the UK. Journal of Environmental Management, 112, 267–274.

    Google Scholar 

  12. Wheatley, A. (1990). Anaerobic digestion: A waste treatment technology. London: Elsevier.

    Google Scholar 

  13. Buendía, I. M., Fernández, F. J., Villaseñor, J., & Rodríguez, L. (2009). Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresource Technology, 100, 1903–1909.

  14. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion, 34, 755–781.

    Google Scholar 

  15. Environment Agency (2010) Renewable energy potential for the water industry. https://connect.innovateuk.org/c/document_library/get_file?folderId=2023104&name=DLFE-20141.pdf

  16. Chen, Y., Chen, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064.

    Google Scholar 

  17. Jansen, J., Gruvberger, C., Hanner, N., Aspegren, H., & Svärd, A. (2004). Digestion of sludge and organic waste in the sustainability concept for Malmö, Sweden. Water Science and Technology, 49, 163–169.

    Google Scholar 

  18. Sosnowski, P., Wieczorek, A., & Ledakowicz, S. (2003). Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 7, 609–616.

    Google Scholar 

  19. Marañón, E., Fernández, Y., & Castrillón, L. (2009). Manual de Estado del Arte de la Co-digestión Anaerobia de Residuos Ganaderos y Agroindustriales (2nd ed.). Oviedo: Universidad de Oviedo.

    Google Scholar 

  20. FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor.

  21. Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Pedretti, E. F., & Riva, G. (2013). Analysis of the characteristics of the tomato anufacturing residues finalized to the energy recovery. Biomass and Bioenergy, 51, 177–182.

    Google Scholar 

  22. Field, J., Sierra-Alvarez, R., & Lettinga, G. (1988). 4° Seminario de Depuración Anaerobia de Aguas Residuales. Valladolid: University of Valladolid.

    Google Scholar 

  23. Cheng, F., Boe, K., & Angelidaki, I. (2011). Anaerobic co-digestion of by-products from sugar productions with cow manure. Water Research, 45, 3473–3480.

    Google Scholar 

  24. Fannin, K. F. (1987). In D. P. Chynoweth & R. Isaacson (Eds.), Anaerobic digestion of biomass: Vol. 1. Start-up, operation, stability and control (pp. 171–196). London: Elsevier.

    Google Scholar 

  25. Aiyuk, S., Forrez, I., Lieven, D. K., van Haandel, A., & Verstraete, W. (2006). Anaerobic and complementary treatment of domestic sewage in regions with hot climates  – a review. Bioresource Technology, 97, 2225–2241.

    Google Scholar 

  26. APHA. (1989). Standard methods for examination of water and wastewater (17th 6 ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  27. Thompson, W. H., Leege, P. B., Millner, P. D., & Watson, M. E. (2001). Test methods for the examination of composting and compost. Bethesda: US Composting Council’.

  28. Water Pollution Control Federation (WPCF) (1967). Anaerobic sludge digestion. Manual of practice No. 16. Alexandria, VA: Water Environment Federation.

  29. Balaguer, M. D., Vicent, M. T., & Paris, J. M. (1992). Anaerobic fluidized bed reactor with sepiolite as support for anaerobic treatment of vinasses. Biotechnology Letters, 14, 433–438.

    Google Scholar 

  30. Gonzalez-Gonzalez, A., Cuadros, F., Ruiz-Celma, A., & López-Rodríguez, F. (2013). Energy-environmental benefits and economic feasibility of anaerobic codigestion of Iberian pig slaughterhouse and tomato industry wastes in Extremadura (Spain). Bioresource Technology, 136, 109–116.

  31. Bouallagui, H., Lahdhed, H., Romdan, E. B., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.

    Google Scholar 

  32. Lee, I., & Han, J. I. (2013). The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production. Ultrasonics Sonochemistry, 20, 1450–1455.

    Google Scholar 

  33. Nallathambi, V. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy, 26, 389–399.

    Google Scholar 

  34. Sarada, R., & Joseph, R. (1996). A comparative study of single and two stage processes for methane production from tomato processing waste. Process Biochemistry, 31, 337–340.

    Google Scholar 

  35. Van Assche, P., Poels, J., & Verstraete, W. (1983). Anaerobic digestion of pig manure with cellulose as co-substrate. Biotechnology Letters, 5, 749–754.

    Google Scholar 

  36. Mottet, A., François, E., Latrille, E., Steyer, J. P., Déléris, S., & Vedrenne, F. (2010). Estimating anaerobic biodegradability indicators for waste activated sludge. Chemical Engineering Journal, 160, 488–496.

    Google Scholar 

  37. Hills, D., & Nakano, K. (1984). Effects of particle size on anaerobic digestion of tomato solid wastes. Agricultural Wastes, 10, 285–295.

    Google Scholar 

  38. Borja, R., Martín, A., Banks, C. J., Alonso, V., & Chica, A. (1995). A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environmental Pollution, 88, 13–18.

    Google Scholar 

  39. Winkler, H. (1983). Biological treatment of wastewater. Chichester: Elis Horwood.

  40. Gujer, W., & Zehnder, A. J. (1983). Conversion processes in anaerobic digestion. Water Science and Technology, 15, 123–167.

    Google Scholar 

  41. Martín, M. A., Fernández, R., Serrano, A., & Siles, J. A. (2013). Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Management, 33, 1633–1639.

    Google Scholar 

  42. Alphenaar, P. A., Sleyster, R., Reuver, P., Ligthart, G. J., & Lettinga, G. (1993). Phosphorus requirement in high-rate anaerobic wastewater treatment. Water Research, 27, 749–756.

    Google Scholar 

  43. Britz, T. J., Noeth, C., & Lategan, P. M. (1988). Nitrogen and phosphate requirements for the anaerobic digestion of a petrochemical effluent. Water Research, 22, 163–169.

    Google Scholar 

  44. Wild, D., Kisliakova, A., & Siegrist, H. (1997). Prediction of recycle phosphorus loads from anaerobic digestion. Water Research, 31, 2300–2308.

    Google Scholar 

  45. Marti, N., Ferrer, J., Seco, A., & Bouzas, A. (2008). Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 42, 4609–4618.

    Google Scholar 

  46. Sprott, G. D., & Patel, G. B. (1986). Ammonia toxicity in pure cultures of methanogenic bacteria system. Applied Applied Microbiology, 7, 358–363.

    Google Scholar 

  47. Gallert, C., Bauer, S., & Winter, J. (1998). Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Applied Microbiology and Biotechnology, 50, 495–501.

    Google Scholar 

  48. Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculation: Effect of pH and temperature. Journal of the Fisheries Research Board of Canada, 32, 2379–2383.

    Google Scholar 

  49. Sung, S., & Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53, 43–52.

    Google Scholar 

  50. Bujoczek, G., Oleszkiewicz, J., Sparling, R., & Cenkiwski, S. (2000). High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76, 51–60.

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Spanish Ministry of Science and Innovation for co-funding this research through Project CTM2011-26350 and to the AECID for the economic support through the Projects D/024687/09, D/030888/10, and A1/039699/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ángeles Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belhadj, S., Joute, Y., El Bari, H. et al. Evaluation of the Anaerobic Co-Digestion of Sewage Sludge and Tomato Waste at Mesophilic Temperature. Appl Biochem Biotechnol 172, 3862–3874 (2014). https://doi.org/10.1007/s12010-014-0790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0790-9

Keywords

Navigation