Skip to main content
Log in

Fe2+ and Cu2+ Increase the Production of Hyaluronic Acid by Lactobacilli via Affecting Different Stages of the Pentose Phosphate Pathway

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P < 0.05) affected the production of hyaluronic acid. Subsequent optimization yielded hyaluronic acid at concentration of 0.6152 mg/mL in the presence of 1.24 mol L−1 iron (II) sulphate and 0.16 mol L−1 of copper (II) sulphate (103 % increase compared to absence of divalent metal ions). Data from molecular docking showed Fe2+ improved the binding affinity of UDP-pyrophophorylase towards glucose-1-phosphate, while Cu2+ contributed towards the interaction between UDP-glucose dehydrogenase and UDP-glucose. We have demonstrated that lactobacilli could produce hyaluronic acid at increased concentration upon facilitation by specific divalent metal ions, via specific targets of enzymes and substrates along pentose phosphate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chong, B. F., Blank, L. M., McLaughlin, R., & Nielsen, L. K. (2005). Applied Microbiology and Biotechnology, 66, 341–351.

    Article  CAS  Google Scholar 

  2. Don, M. M., & Shoparwe, N. F. (2010). Biochemical Engineering Journal, 49, 95–103.

    Article  CAS  Google Scholar 

  3. Vazquez, J. A., Montemayor, M. I., Fraguas, J., & Murado, M. A. (2010). Microbial Cell Factories, 9, 46.

    Article  Google Scholar 

  4. Pires, A. M., Macedo, A. C., Eguchi, S. Y., & Santana, M. H. (2010). Bioresource Technology, 101, 6506–6509.

    Article  CAS  Google Scholar 

  5. Widner, B., Behr, R., Von Dollen, S., Tang, M., Heu, T., Sloma, A., Sternberg, D., Deangelis, P. L., Weigel, P. H., & Brown, S. (2005). Applied and Environmental Microbiology, 71, 3747–3752.

    Article  CAS  Google Scholar 

  6. Izawa, N., Hanamizu, T., Iizuka, R., Sone, T., Mizukoshi, H., Kimura, K., & Chiba, K. (2009). Journal of Bioscience and Bioengineering, 107, 119–123.

    Article  CAS  Google Scholar 

  7. Liu, L., Du, G., Chen, J., Zhu, Y., Wang, M., & Sun, J. (2009). Bioresource Technology, 100, 362–367.

    Article  CAS  Google Scholar 

  8. Kim, J. H., Yoo, S. J., Oh, D. K., Kweon, Y. G., Park, D. W., Lee, C. H., & Gil, G. H. (1996). Enzyme and Microbial Technology, 19, 440–445.

    Article  CAS  Google Scholar 

  9. Pinto, D., Marzani, B., Minervini, F., Calasso, M., Giuliani, G., Gobbetti, M., & De Angelis, M. (2011). Peptides, 32, 1815–1824.

    Article  CAS  Google Scholar 

  10. Fitzpatrick, J. J., Ahrens, M., & Smith, S. (2001). Process Biochemistry, 36, 671–675.

    Article  CAS  Google Scholar 

  11. Lew, L. C., Gan, C. Y., & Liong, M. T. (2012). Journal of Applied Microbiology, 114, 526–535.

    Article  Google Scholar 

  12. Elli, M., Zink, R., Rytz, A., Reniero, R., & Morelli, L. (2000). Journal of Applied Microbiology, 88, 695–703.

    Article  CAS  Google Scholar 

  13. Lew, L. C., Gan, C. Y., & Liong, M. T. (2013). Annals of Microbiology, 63, 1047–1055.

    Article  CAS  Google Scholar 

  14. Yeo, S. K., & Liong, M. T. (2010). Journal of the Science of Food and Agriculture, 90, 267–275.

    Article  CAS  Google Scholar 

  15. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Journal Computational Chemisrty, 30, 2785–2791.

    Google Scholar 

  16. Humphrey, W., Dalke, A., & Schulten, K. (1996). Journal of Molecular Graphics, 14, 33–38. 27-38.

    Article  CAS  Google Scholar 

  17. Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). Protein Engineering, 8, 127–134.

    Article  CAS  Google Scholar 

  18. Liong, M. T., Dunshea, F. R., & Shah, N. P. (2007). The British Journal of Nutrition, 98, 736–744.

    Article  CAS  Google Scholar 

  19. Liong, M. T., & Shah, N. P. (2005). Journal of Applied Microbiology, 99, 783–793.

    Article  CAS  Google Scholar 

  20. Lew, L. C., & Liong, M. T. (2013). Journal of Applied Microbiology, 114, 1241–1253.

    Article  CAS  Google Scholar 

  21. Price, R. D., Berry, M. G., & Navsaria, H. A. (2007). Journal of Plastic, Reconstructive & Aesthetic Surgery, 60, 1110–1119.

    Article  Google Scholar 

  22. Fung, W. Y., Woo, Y. P., & Liong, M. T. (2008). Journal of Agricultural and Food Chemistry, 56, 7910–7918.

    Article  CAS  Google Scholar 

  23. Teh, S. S., Ahmad, R., Wan-Abdullah, W. N., & Liong, M. T. (2009). Journal of Agricultural and Food Chemistry, 57, 10187–10198.

    Article  CAS  Google Scholar 

  24. Liu, L., Wang, M., Du, G., & Chen, J. (2008). Letters in Applied Microbiology, 46, 383–388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science Fund Grant (305/PTEKIND/613222) provided by the Malaysian Ministry of Science, Technology and Innovation (MOSTI), the FRGS grant (203/PTEKIND/6711239) provided by the Malaysian Ministry of Higher Education (MOHE), USM RU grants (1001/PKIMIA/855006, 1001/PTEKIND/815085) and USM Fellowship provided by Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Tze Liong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SB., Lew, LC., Hor, KC. et al. Fe2+ and Cu2+ Increase the Production of Hyaluronic Acid by Lactobacilli via Affecting Different Stages of the Pentose Phosphate Pathway. Appl Biochem Biotechnol 173, 129–142 (2014). https://doi.org/10.1007/s12010-014-0822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0822-5

Keywords

Navigation