Skip to main content
Log in

Trypsin Inhibitor from Edible Mushroom Pleurotus floridanus Active against Proteases of Microbial Origin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protease inhibitors can be versatile tools mainly in the fields of medicine, agriculture and food preservative applications. Fungi have been recognized as sources of protease inhibitors, although there are only few such reports on mushrooms. This work reports the purification and characterization of a trypsin inhibitor from the fruiting body of edible mushroom Pleurotus floridanus (PfTI) and its effect on the activity of microbial proteases. The protease inhibitor was purified up to 35-fold by DEAE-Sepharose ion exchange column, trypsin-Sepharose column and Sephadex G100 column. The isoelectric point of the inhibitor was 4.4, and its molecular mass was calculated as 37 kDa by SDS-PAGE and 38.3 kDa by MALDI-TOF. Inhibitory activity confirmation was by dot-blot analysis and zymographic activity staining. The specificity of the inhibitor toward trypsin was with Ki of 1.043 × 10−10 M. The inhibitor was thermostable up to 90 °C with maximal stability at 30 °C, active over a pH range of 4–10 against proteases from Aspergillus oryzae, Bacillus licheniformis, Bacillus sp. and Bacillus amyloliquefaciens. Results indicate the possibility of utilization of protease inhibitor from P. floridanus against serine proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Habib, H., & Fazili, K. M. (2007). Biotechnology and Molecular Biology Reviews, 2, 68–85.

    Google Scholar 

  2. Ahn, J. E., Salzman, R. A., Braunagel, S. C., Koiwa, H., & Zhu-Salzman, K. (2004). Insect Molecular Biology, 13, 649–657.

    Article  CAS  Google Scholar 

  3. Imada, C. (2005). Antonie Van Leeuwenhoek, 87, 59–63.

    Article  CAS  Google Scholar 

  4. Robert, A. C. (2005). Methods of Biochemical Analysis, 46, 1–265.

    Google Scholar 

  5. Lopez-Otin, C., & Bond, J. S. (2008). Journal of Biological Chemistry, 283, 30433–30437.

    Article  CAS  Google Scholar 

  6. Turk, B. (2006). Nature Reviews Drug Discovery, 5, 785–799.

    Article  CAS  Google Scholar 

  7. Drag, M., & Salvesen, G. S. (2010). Nature Reviews Drug Discovery, 9, 690–701.

    Article  CAS  Google Scholar 

  8. Haq, S. K., Rabbani, G., Ahmad, E., Atif, S. M., & Khan, R. H. (2010). Journal of Biochemical and Molecular Toxicology, 24, 270–277.

    Article  CAS  Google Scholar 

  9. Dunse, K. M., Stevens, J. A., Lay, F. T., Gaspar, Y. M., Heath, R. L., & Anderson, M. A. (2010). Proceedings of the National Academy of Sciences of the United States of America, 107, 15011–15015.

    Article  CAS  Google Scholar 

  10. Abbas, K. A., Saleh, A. M., Mohamed, A., & Lasekan, O. (2009). The Journal of Food, Agriculture & Environment, 7, 86–90.

    Google Scholar 

  11. Bijina, B., Chellappan, S., Krishna, J. G., Basheer, S. M., Elyas, K. K., Bahkali, A. H., & Chandrasekaran, M. (2011). Saudi Journal of Biological Sciences, 18, 273–281.

    Article  CAS  Google Scholar 

  12. Maier, K., Muller, H., Tesch, R., Trolp, R., Witt, I., & Holzer, H. (1979). Journal of Biological Chemistry, 254, 12555–12561.

    CAS  Google Scholar 

  13. Biedermann, K., Montali, U., Martin, B., Svendsen, I., & Ottesen, M. (1980). Carlsberg Research Communications, 45, 225–235.

    Article  CAS  Google Scholar 

  14. Dohmae, N., Takio, K., Tsumuraya, Y., & Hashimoto, Y. (1995). Archives of Biochemistry and Biophysics, 316, 498–506.

    Article  CAS  Google Scholar 

  15. Odani, S., Tominaga, K., Kondou, S., Hori, H., Koide, T., Hara, S., Isemura, M., & Tsunasawa, S. (1999). European Journal of Biochemistry, 262, 915–923.

    Article  CAS  Google Scholar 

  16. Zuchowski, J., & Grzywnowicz, K. (2006). Current Microbiology, 53, 259–264.

    Article  CAS  Google Scholar 

  17. Avanzo, P., Saboticˇ, J., Anzˇlovar, S., Popovicˇ, T., Leonardi, A., Pain, R. H., Kos, J., & Brzin, J. (2009). Journal of Microbiology, 155, 3971–3981.

    Article  CAS  Google Scholar 

  18. Sabotič, J., Bleuler-Martinez, S., Renko, M., Caglič, P. A., Kallert, S., Štrukelj, B., Turk, D., Aebi, M., Kos, J., & Künzler, M. (2012). Journal of Biological Chemistry, 287, 3898–3907.

    Article  Google Scholar 

  19. Renko, M., Saboticˇ, J., Mihelicˇ, M., Brzin, J., Kos, J., & Turk, D. (2010). Journal of Biological Chemistry, 285, 308–316.

    Article  CAS  Google Scholar 

  20. Chang, S. T. (1991). In D. K. Arora, K. G. Mukerji, E. H. Marth (Eds.), Hand book of applied mycology (pp. 221–240). New York: Marcel Dekker Inc.

  21. Kunitz, M. (1947). Journal of General Physiology, 30, 291–310.

    Article  CAS  Google Scholar 

  22. Kakade, M. L., Rackis, J. J., McGhee, J. E., & Puski, G. (1974). Cereal Chemistry, 51, 376–382.

    CAS  Google Scholar 

  23. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Englard, S. & Seifter, S. (1990). Precipitation techniques. In M. P. Deutscher (Ed.), Methods in enzymology (pp. 285–300) vol. 182. NewYork: Academic Press.

  25. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Uriel, J., & Berges, J. (1968). Nature, 218, 578–580.

    Article  CAS  Google Scholar 

  27. Veerappa, H. M., Kulkarni, S., & Ashok, P. G. (2002). Biochemistry and Molecular Biology Education, 30, 40–44.

    Article  Google Scholar 

  28. Cornish-Bowden, A. (1995). Fundamentals of enzyme kinetics (3rd ed., pp. 297–300). London: Portland Ltd.

    Google Scholar 

  29. Maier, K., Miiller, H., & Holzer, H. (1979). Journal of Biological Chemistry, 254, 8491–8497.

    CAS  Google Scholar 

  30. Obregón, W. D., Ghiano, N., Tellechea, M., Cisneros, J. S., Lazza, C. M., López, L. M. I., & Avilés, F. X. (2012). Food Chemistry, 133, 1163–1168.

    Article  Google Scholar 

  31. Polgar, L. (1989). In mechanism of protease action. Boca Raton, FL: CRC.

    Google Scholar 

  32. Bhattacharyya, A., Mazumdar, S., Leighton, M. S., & Babu, C. R. (2006). Phytochemistry, 67, 232–241.

    Article  CAS  Google Scholar 

  33. Oliveira, A. S., Migliolo, L., Aquino, R. O., Ribeiro, J. K. C., Macedo, L. L. P., Andrade, L. B. S., Bemquerer, M. P., Santos, E. A., Kiyota, S., & Sales, M. P. (2007). Journal of Agricultural and Food Chemistry, 55, 7342–7349.

    Article  CAS  Google Scholar 

  34. Brzin, J., Rogelj, B., Popovicˇ, T., trukelj, B. S., & Ritonja, A. (2000). Journal of Biological Chemistry, 275, 20104–20109.

    Article  CAS  Google Scholar 

  35. Oppert, B., Morgan, T. D., Hartzer, K., Lenarcic, B., Galesa, K., Brzin, J., Turk, V., Yoza, K., Ohtsubo, K., & Kramer, K. J. (2003). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 134, 481–490.

    Article  CAS  Google Scholar 

  36. Sabotič, J., & Kos, J. (2012). Applied Microbiology and Biotechnology, 93, 1351–1375.

    Article  Google Scholar 

  37. Pandhare, J., Zog, K., & Deshpande, V. V. (2002). Bioresource Technology, 2, 165–169.

    Article  Google Scholar 

  38. Angelova, L., Dalgalarrondo, M., Minkov, I., Danova, S., Kirilov, N., Serkedjieva, J., Chobert, J.-M., Haertlé, T., & Ivanova, I. (2006). Biochimica et Biophysica Acta, 1760, 1210–1216.

    Article  CAS  Google Scholar 

  39. Lopes, J. L. S., Valadares, N. F., Moraes, D. I., Rosa, J. C., Araújo, H. S. S., & Beltramini, L. M. (2009). Photochemistry, 70, 871–879.

    Article  CAS  Google Scholar 

  40. Ramachandran, R., & Hollenberg, M. D. (2008). British Journal of Pharmacology, 153, S263–S282.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Manzur Ali P P is grateful to University Grants Commission for providing Teacher Fellowship. Financial support from Kerala Biotech Commission, KSCSTE, Kerala (Project Fellowship 739/MS/2011–2012 dated 19.03.2012) is gratefully acknowledged by the last author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Manzur Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, P.P.M., Sapna, K., Mol, K.R.R. et al. Trypsin Inhibitor from Edible Mushroom Pleurotus floridanus Active against Proteases of Microbial Origin. Appl Biochem Biotechnol 173, 167–178 (2014). https://doi.org/10.1007/s12010-014-0826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0826-1

Keywords

Navigation