Skip to main content

Advertisement

Log in

Continuous Enzymatic Hydrolysis of Lignocellulosic Biomass with Simultaneous Detoxification and Enzyme Recovery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.

A semicontinuous process for the biochemical production of renewable products using detoxification and fed-batch enzyme addition/recycle can increase enzymatic hydrolysis and fermentation efficiencies. Hydrolysis enzymes, inhibitors, sugars, and water can be separated and utilized as high-value steams within the process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Appl Microbiol Biotechnol, 64(2), 137–145.

    Article  CAS  Google Scholar 

  2. Ohara, H. (2003). Biorefinery. Appl Microbiol Biotechnol, 62(5/6), 474–477.

    Article  CAS  Google Scholar 

  3. Wilke, T., & Vorlop, K. D. (2004). Industrial conversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol, 66(2), 131–142.

    Article  Google Scholar 

  4. Hamelinck, C. N., van Hooijdonk, G., & Faajj, A. P. C. (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy, 28(4), 384–410.

    Article  CAS  Google Scholar 

  5. Mosier, N., Wyman, C., Dale, B. E., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 96(6), 673–686.

    Article  CAS  Google Scholar 

  6. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocelluloses: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci, 38(4), 522–550.

    Article  CAS  Google Scholar 

  7. Jacquet, N., Vanderghem, C., Blecker, C., Malumba, P., Delvigne, F., & Paquot, M. (2012). Improvement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input. Cerevisia, 37(3), 82–87.

    Article  CAS  Google Scholar 

  8. Laureano-Perez, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol, 121–124(1–3), 1081–1099.

    Article  Google Scholar 

  9. Yang, B., & Wyman, C. E. (2007). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin, 2(1), 26–40.

    Article  CAS  Google Scholar 

  10. Gregg, D. J., Boussaid, A., & Saddler, J. (1998). Techno-economic modeling of a generic wood-to-ethanol process: effect of increased cellulose yields and enzyme recycle. Bioresour Technol, 63(1), 7–12.

    Article  CAS  Google Scholar 

  11. Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog, 19(4), 1109–1117.

    Article  CAS  Google Scholar 

  12. Galbe, M., & Zacchi, G. (2002). A review of the production of ethanol from softwood. Appl Microbiol Biotechnol, 59(6), 618–628.

    Article  CAS  Google Scholar 

  13. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng, 109(4), 1083–1087.

    Article  CAS  Google Scholar 

  14. Berlin, A., Gilkes, A., Kurabi, A., Bura, R., Tu, M. B., & Kilburn, D. (2005). Weak lignin-binding enzymes—a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol, 121/124, 163–170.

    Article  Google Scholar 

  15. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., & Bulingame, R. (2007). Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng, 97(5), 1028–1038.

    Article  CAS  Google Scholar 

  16. Zhou, J., Wang, Y. H., Chua, J., Luoa, L. Z., Zhuanga, Y. P., & Zhanga, S. L. (2009). Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol, 100(2), 819–825.

    Article  CAS  Google Scholar 

  17. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv, 4(3), 201–210.

    Google Scholar 

  18. Muhammad, S. A., Mahjabeen, S., & Waheed, A. (2001). Saccharification of lignocellulosic materials by the cellulases of Bacillus subtilis. Int J Agric Biol, 3(2), 199–202.

    Google Scholar 

  19. Srinorakutar, T., Subkaree, Y., Bamrungchue, N., Pripanapong, P., & Burapatana, V. (2012). Effect of lignocellulosic substrate and commercial cellulase loading on reducing sugar concentration for ethanol production. J Food Sci Eng, 2(3), 149–156.

    Google Scholar 

  20. Girard, D. J., & Converse, A. O. (1993). Recovery of cellulase from lignaceous hydrolysis residue. Appl Biochem Biotechnol, 39/40(1), 521–533.

    Article  Google Scholar 

  21. Lee, D., Yu, A. H. C., Wong, K. K. Y., & Saddler, J. N. (1994). Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Appl Biochem Biotechnol, 45/46(1), 407–415.

    Article  Google Scholar 

  22. Gurram, R. N., Datta, S., Lin, Y. J., Snyder, S. W., & Menkhaus, T. J. (2011). Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies. Bioresour Technol, 102(17), 7850–7859.

    Article  CAS  Google Scholar 

  23. Jing, X., Zhang, X., & Ba, J. (2009). Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Appl Biochem Biotechnol, 159(3), 696–707.

    Article  CAS  Google Scholar 

  24. Szengyel, Z., & Zacchi, G. (2000). Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol, 89(1), 31–42.

    Article  CAS  Google Scholar 

  25. Phillippidis, G. P., Smith, T. K., & Wyman, C. E. (1992). Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng, 41(9), 846–853.

    Article  Google Scholar 

  26. Xiao, Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol, 113/116, 1115–1126.

    Article  Google Scholar 

  27. Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol, 98/100, 641–654.

    Article  Google Scholar 

  28. Meshartree, M., Hogan, C. M., & Saddler, J. N. (1987). Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood. Biotechnol Bioeng, 30(4), 558–564.

    Article  CAS  Google Scholar 

  29. Deshpande, M. V., & Eriksson, K. E. (1984). Reutilization of enzymes for saccharification of lignocellulosic materials. Enzym Microbiol Technol, 6(8), 338–340.

    Article  CAS  Google Scholar 

  30. Ooshima, H., Burn, D. S., & Converse, A. O. (1990). Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol Bioeng, 36(5), 446–452.

    Article  CAS  Google Scholar 

  31. Rao, R., & Radhakrishnan, D. (2008). Dynamics of cellulase activity during composting of municipal solid waste. Electron J Environ Agric Food Chem, 7(9), 3191–3198.

    Google Scholar 

  32. Sinitsyn, A. P., Bungay, M. L., Clesceri, L. S., & Bungay, H. R. (1983). Recovery of enzymes from the insoluble residue of hydrolyzed wood. Appl Biochem Biotechnol, 8(1), 25–29.

    Article  CAS  Google Scholar 

  33. Knutsen, J. S., & Davis, R. H. (2004). Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis. Appl Biochem Biotechnol, 113/116, 585–599.

    Article  Google Scholar 

  34. Ramos, L. P., Breuil, C., & Saddler, J. N. (1993). The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzym Microbiol Technol, 15(1), 19–25.

    Article  CAS  Google Scholar 

  35. Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog, 23(2), 398–406.

    Article  CAS  Google Scholar 

  36. Qi, B., Luo, J., Chen, G., Chen, X., & Wan, Y. (2012). Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolysate of steam exploded wheat straw. Bioresour Technol, 104, 466–472.

    Article  CAS  Google Scholar 

  37. Ramos, L. P., & Saddler, J. N. (1994). Enzyme recycling during fed-batch hydrolysis of cellulose derived from steam-exploded Eucalyptus viminalis. Appl Biochem Biotechnol, 45/46, 193–207.

    Article  Google Scholar 

  38. Steele, B., Raj, S., Nghiem, J., & Stowers, M. (2005). Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion-treated corn stover. Appl Biochem Biotechnol, 121/124, 901–910.

    Article  Google Scholar 

  39. Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog, 23(5), 1130–1137.

    CAS  Google Scholar 

  40. Weiss, N., Borjesson, J., Pedersen, L. S., & Meyer, A. S. (2013). Enzymatic lignocelluloses hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotech Biofuels, 6, 5. doi:10.1186/1754-6834-6-5.

    Article  CAS  Google Scholar 

  41. Mores, W. D., Knutsen, J. S., & Davis, R. H. (2001). Cellulase recovery via membrane filtration. Appl Biochem Biotechnol, 91/93, 297–309.

    Article  Google Scholar 

  42. Roche, C. M., Dibble, C. J., & Stickel, J. J. (2009). Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotech Biofuels, 2, 28. doi:10.1186/1754-6834-2-28.

    Article  Google Scholar 

  43. Junker, B. (2007). Foam and its mitigation in fermentation system. Biotechnol Prog, 23(4), 767–784.

    Article  CAS  Google Scholar 

  44. Hu, C. Y., & Lin, L. P. (2003). Characterization and purification of hydrolytic enzymes in Sinorhizobium fredii CCRC 15769. World J Microbiol Biotechnol, 19(5), 515–522.

    Article  CAS  Google Scholar 

  45. Li, Y. H., Ding, M., Wang, J., Xu, G. J., & Zhao, F. (2006). A novel thermoacidophilic endoglucanase, B-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Appl Biochem Biotechnol, 70(4), 430–436.

    CAS  Google Scholar 

  46. Singh, J., Batra, N., & Sobti, R. C. (2004). Purification and characterization of alkaline cellulose produced by a novel isolate, Bacillus sphaericus JS1. Ind Microbiol Biotechnol, 31(2), 51–56.

    Article  CAS  Google Scholar 

  47. Larsson, S., Reimann, A., Nilvebrant, N., & Jönsson, L. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol, 77(1), 91–103.

    Article  Google Scholar 

  48. Ranjan, R., Thust, S., Gounaris, C. E., Woo, M., Floudas, C. A., Keitz, M., Valentas, K. J., Wei, J., & Tsapatsis, M. (2009). Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery. Microporous Mesoporous Mater, 122(1/3), 143–148.

    Article  CAS  Google Scholar 

  49. Sainio, T., Turku, I., & Heinonen, J. (2011). Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass. Bioresour Technol, 102(10), 6048–6057.

    Article  CAS  Google Scholar 

  50. Carter, B., Gilcrease, P. C., & Menkhaus, T. J. (2011). Removal and recovery of furfural, 5-hydroxymethylfurfural and acetic acid from aqueous solutions using a soluble polyelectrolyte. Biotechnol Bioeng, 108(9), 2046–2052.

    Article  CAS  Google Scholar 

  51. Carter, B., Squillace, P., Gilcrease, P. C., & Menkhaus, T. J. (2011). Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency. Biotechnol Bioeng, 108(9), 2053–2060.

    Article  CAS  Google Scholar 

  52. Burke, D. R., Anderson, J., Gilcrease, P. C., & Menkhaus, T. J. (2011). Enhanced solid–liquid clarification of lignocellulosic slurries using polyelectrolyte flocculating agents. Biomass Bioenergy, 35(1), 391–401.

    Article  CAS  Google Scholar 

  53. Zhou, H., Lou, H., Yan, D., Zhu, J. Y., & Qiu, X. (2013). Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Resour, 52(25), 8464–8470.

    Article  CAS  Google Scholar 

  54. Arantes, V., & Saddler, J. N. (2011). Cellulose accessibility limits the effectiveness of minimum cellulose loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotech Biofuels, 4, 3. doi:10.1186/1754-6834-4-3.

    Article  CAS  Google Scholar 

  55. Gan, Q., Allen, S. J., & Taylor, G. (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modeling. Process Biochem, 38, 1003–1018.

    Article  CAS  Google Scholar 

  56. Lee, Y. Y., Iyer, P., & Torget, R. W. (1999). Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol, 65, 93–115.

    CAS  Google Scholar 

  57. Tan, L. U. L., Yu, E. K. C., Campbell, N., & Saddler, J. N. (1986). Column cellulose hydrolysis reactor: an efficient cellulose hydrolysis reactor with continuous cellulase recycling. Appl Microbiol Biotechnol, 25(3), 250–255.

    CAS  Google Scholar 

  58. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hagerdal, B. (1999). Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng, 63(1), 46–55.

    Article  CAS  Google Scholar 

  59. Rachma, W., Ria, M., Siti, S., Ririn, M., & Yulian, A. (2010). Effect of furfural, hydroxymethylfurfural and acetic acid on indigenous microbial isolate for bioethanol production. Agric J, 5(2), 105–109.

    Article  Google Scholar 

  60. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol, 66(1), 10–26.

    Article  CAS  Google Scholar 

  61. Ximenes, E., Kim, Y., Mosier, N. S., Dien, B., & Ladisch, M. R. (2010). Inhibition of cellulases by phenols. Enzym Microb Technol, 46, 170–176.

    Article  CAS  Google Scholar 

  62. Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulose enzymes from lignocellulosic biomass. Enzym Microb Technol, 48(4–5), 408–415.

    Article  CAS  Google Scholar 

  63. Weil, J. R., Dien, B., Bothast, R., Hendrickson, R., Mosier, N. S., & Ladisch, M. R. (2002). Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res, 41(24), 6132–6138.

    Article  CAS  Google Scholar 

  64. Luo, X., Gleisner, R., Tian, S., Negron, J., Horn, E., Pan, X. J., & Zhu, J. Y. (2010). Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by SPORL pretreatment. Ind Eng Chem Res, 49(17), 8258–8266.

    Article  CAS  Google Scholar 

  65. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12/13), 1781–1788.

    Article  CAS  Google Scholar 

  66. Sim, S. F., Mohamed, M., Lu, N. A., Lu, M. I., Sarman, N. S. P., & Samsudin, S. N. S. (2012). Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. Bioresources, 7(4), 5367–5380.

    Google Scholar 

  67. Sprey, B. (1987). Complexity of cellulases from Trichoderma reesei with acidic isoelectric points: a two-dimensional gel electrophoretic study using immunoblotting. FEMS Microbiol Lett, 43, 25–32.

    Article  CAS  Google Scholar 

  68. Leberknight, J., & Menkhaus, T. J. (2013). Membrane separations for solid–liquid clarification within lignocellulosic biorefining processes. Biotechnol Prog, 29(5), 1246–1254.

    Article  CAS  Google Scholar 

  69. Gautam, A. K., & Menkhaus, T. J. (2014). Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. J Membr Sci, 451, 252–265.

    Article  CAS  Google Scholar 

  70. Gurram, R. N., & Menkhaus, T. J. (2013). Analysis and characterization of heat transfer fouling during evaporation of a lignocellulosic biomass process stream. Ind Eng Chem Res, 52(32), 11111–11121.

    Article  CAS  Google Scholar 

  71. Guarram, R. N., & Menkhaus, T. J. (2013). Effects of pH, slurry composition, and operating conditions on heat transfer fouling during evaporation of a lignocellulosic biomass process stream. Ind Eng Chem Res, 52(32), 11122–11131.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for R. Gurram was provided by the USDA NIFA, AFRI Competitive Grant No. 2010-65504-20372.

Conflict of Interest

No sources for conflicts of interest are present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd J. Menkhaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurram, R.N., Menkhaus, T.J. Continuous Enzymatic Hydrolysis of Lignocellulosic Biomass with Simultaneous Detoxification and Enzyme Recovery. Appl Biochem Biotechnol 173, 1319–1335 (2014). https://doi.org/10.1007/s12010-014-0873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0873-7

Keywords

Navigation