Skip to main content
Log in

Mixtures of Thermostable Enzymes Show High Performance in Biomass Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ratio of 4:1 or higher of thermostable enzymes gave the maximal CBH-EG synergy in the hydrolysis of hydrothermally pretreated wheat straw. The composition of optimal enzyme mixtures depended clearly on the substrate and on the enzyme system studied. The optimal enzyme mixture of thermostable enzymes was dominated by Cel7A and required a relatively high amount of xylanase, whereas with T. reesei enzymes, the high proportion of Cel7B appeared to provide the required xylanase activity. The main effect of the pretreatment method was that the required proportion of xylanase was higher and the proportion of Cel7A lower in the optimized mixture for hydrolysis of alkaline oxidised bagasse than steam-exploded bagasse. In prolonged hydrolyses, less Cel7A was generally required in the optimal mixture. Five-component mixtures of thermostable enzymes showed comparable hydrolysis yields to those of commercial enzyme mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nidetzky, B., Hayn, M., Macarron, R., & Steiner, W. (1993). Biotechnology Letters, 15, 71–76.

    Article  CAS  Google Scholar 

  2. Banerjee, G., Car, S., Scott-Craig, J., Borrusch, M., & Walton, J. (2010). Biotechnology and Biofuels, 3, 22.

    Article  Google Scholar 

  3. Kumar, R., & Wyman, C. E. (2009). Bioresource Technology, 100, 4203–4213.

    Article  CAS  Google Scholar 

  4. Hu, J., Arantes, V., & Saddler, J. (2011). Biotechnology and Biofuels, 4, 36.

    Article  CAS  Google Scholar 

  5. Selig, M. J., Knoshaug, E. P., Adney, W. S., Himmel, M. E., & Decker, S. R. (2008). Bioresource Technology, 99, 4997–5005.

    Article  CAS  Google Scholar 

  6. Varnai, A., Huikko, L., Pere, J., Siika-aho, M., & Viikari, L. (2011). Bioresource Technology, 102, 9096–9104.

    Article  CAS  Google Scholar 

  7. Zhang, J., Tuomainen, P., Siika-aho, M., & Viikari, L. (2011). Bioresource Technology, 102, 9090–9095.

    Article  CAS  Google Scholar 

  8. Rosgaard, L., Pedersen, S., Langston, J., Akerhielm, D., Cherry, J. R., & Meyer, A. S. (2007). Biotechnology Progress, 23, 1270–1276.

    Article  CAS  Google Scholar 

  9. Billard, H., Faraj, A., Lopes, F. N., Menir, S., & Heiss-Blanquet, S. (2012). Biotechnology and Biofuels, 5, 9.

    Article  CAS  Google Scholar 

  10. Gao, D., Chundawat, S. S., Liu, T., Hermanson, S., Gowda, K., Brumm, P., Dale, B., & Balan, V. (2010). Bioenergy Research, 3, 67–81.

    Article  Google Scholar 

  11. Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Aslam, N., & Walton, J. D. (2010). Biotechnology and Bioengineering, 106, 707–720.

    Article  CAS  Google Scholar 

  12. Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S., Bongers, M., & Walton, J. D. (2010). Bioresource Technology, 101, 9097–9105.

    Article  CAS  Google Scholar 

  13. Gao, D., Chundawat, S. P. S., Krishnan, C., Balan, V., & Dale, B. E. (2010). Bioresource Technology, 101, 2770–2781.

    Article  CAS  Google Scholar 

  14. Zhou, J., Wang, Y., Chu, J., Luo, L., Zhuang, Y., & Zhang, S. (2009). Bioresource Technology, 100, 819–825.

    Article  CAS  Google Scholar 

  15. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., Emalfarb, M., Baez, M., & Sinitsyn, A. P. (2007). Biotechnology and Bioengineering, 97, 1028–1038.

    Article  CAS  Google Scholar 

  16. Berlin, A., Maximenko, V., Gilkes, N., & Saddler, J. (2007). Biotechnology and Bioengineering, 97, 287–296.

    Article  CAS  Google Scholar 

  17. Garlock, R. J., Balan, V., & Dale, B. E. (2012). Bioresource Technology, 104, 757–768.

    Article  CAS  Google Scholar 

  18. Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperä, J., & Siika-Aho, M. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 121–145.

    Article  CAS  Google Scholar 

  19. Szijarto, N., Horan, E., Zhang, J., Puranen, T., Siika-aho, M., & Viikari, L. (2011). Biotechnology and Biofuels, 4, 2.

    Article  CAS  Google Scholar 

  20. Petersen, M. Ø., Larsen, J., & Thomsen, M. H. (2009). Biomass and Bioenergy, 33, 834–840.

    Article  CAS  Google Scholar 

  21. Kallioinen, A., Hakola, M., Riekkola, T., Repo, T., Leskelä, M., von Weymarn, N., & Siika-aho, M. (2013). Bioresource Technology, 140, 414–420.

    Article  CAS  Google Scholar 

  22. Puls, J., Poutanen, K., Körner, H., & Viikari, L. (1985). Applied Microbiology and Biotechnology, 22, 416–423.

    Article  CAS  Google Scholar 

  23. Tenkanen, M., & Siika-aho, M. (2000). Journal of Biotechnology, 78, 149–161.

    Article  CAS  Google Scholar 

  24. Suurnäkki, A., Tenkanen, M., Siika-aho, M., Niku-Paavola, M., Viikari, L., & Buchert, J. (2000). Cellulose, 7, 189–209.

    Article  Google Scholar 

  25. Tenkanen, M., Puls, J., & Poutanen, K. (1992). Enzyme and Microbial Technology, 14, 566–574.

    Article  CAS  Google Scholar 

  26. Sipos, B., Benko, Z., Dienes, D., Reczey, K., Viikari, L., & Siika-aho, M. (2010). Applied Biochemistry and Biotechnology, 161, 347–364.

    Article  CAS  Google Scholar 

  27. Paloheimo, M., Mäntylä, A., Kallio, J., & Suominen, P. (2003). Applied and Environmental Microbiology, 69, 7073–7082.

    Article  CAS  Google Scholar 

  28. Penttilä, M., Nevalainen, H., Rättö, M., Salminen, E., & Knowles, J. (1987). Gene, 61, 155–164.

    Article  Google Scholar 

  29. van Tilbeurgh, H., Bhikhabhai, R., Pettersson, L. G., & Claeyssens, M. (1984). FEBS Letters, 169, 215–218.

    Article  Google Scholar 

  30. Lowry, O., Rosenbrough, N., Farr, A., & Randall, R. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  31. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  32. Bailey, M. J., & Linko, M. (1990). Journal of Biotechnology, 16, 57–66.

    Article  CAS  Google Scholar 

  33. Rahikainen, J., Mikander, S., Marjamaa, K., Tamminen, T., Lappas, A., Viikari, L., & Kruus, K. (2011). Biotechnology and Bioengineering, 108, 2823–2834.

    Article  CAS  Google Scholar 

  34. Bernfeld P. (1955) in Methods of enzymology, vol 1 (Colowick S. and Kaplan N., ed.), Academic press, New York, pp. 149-158.

  35. Bailey, M., Siika-aho, M., Valkeajarvi, A., & Penttila, M. (1993). Biotechnology and Applied Biochemistry, 17, 65–76.

    CAS  Google Scholar 

  36. Vlasenko, E., Schülein, M., Cherry, J., & Xu, F. (2010). Bioresource Technology, 101, 2405–2411.

    Article  CAS  Google Scholar 

  37. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the EU 7th framework program project HYPE grant number 213139 and the Finnish Funding Agency for Technology and Innovation (Tekes) Biorefine program project SugarTech is gratefully acknowledged. The authors thank Jari Leino and Juha Kaunisto for carrying out the steam explosion and alkaline oxidation pretreatments, Markku Saloheimo for providing T. reesei supernatant with CtCel6A enzyme and Roosa Luode, Ulla Vornamo and Jenni Lehtonen for carrying out the hydrolysis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Kallioinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallioinen, A., Puranen, T. & Siika-aho, M. Mixtures of Thermostable Enzymes Show High Performance in Biomass Saccharification. Appl Biochem Biotechnol 173, 1038–1056 (2014). https://doi.org/10.1007/s12010-014-0893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0893-3

Keywords

Navigation