Skip to main content
Log in

Nanomaterial-Based Biosensors for Food Toxin Detection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

There is an increased interest toward the development of bioelectronic devices for food toxin (mycotoxins) detection. Mycotoxins are highly toxic secondary metabolites produced by fungi like Fusarium, Aspergillus, and Penicillium that are frequently found in crops or during storage of food including cereals, nuts, fruits, etc. The contamination of food by mycotoxins has become a matter of increasing concern. High levels of mycotoxins in the diet can cause adverse, acute, and chronic effects on human health and a variety of animal species. Side effects may particularly affect the liver, kidney, nervous system, endocrine system, and immune system. Among 300 mycotoxins known till date, there are a few that are considered to play an important part in food safety, and for these, a range of analytical methods have been developed. Some of the important mycotoxins include aflatoxins, ochratoxins, fumonisins, citreoviridin, patulin, citrinin, and zearalenon. The conventional methods of analysis of mycotoxins normally require sophisticated instrumentation, e.g., liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. Hence, new analysis tools are necessary to attain more sensitive, specific, rapid, and reliable information about the desired toxin. For the last about two decades, the research and development of simpler and faster analytical procedures based on affinity biosensors has aroused much interest due to their simplicity and sensitivity. The nanomaterials have recently had a great impact on the development of biosensors. The functionalized nanomaterials are used as catalytic tools, immobilization platforms, or as optical or electroactive labels to improve the biosensing performance to obtain higher sensitivity, stability, and selectivity. Nanomaterials, such as carbon nanomaterials (carbon nanotubes and graphene), metal nanoparticles, nanowires, nanocomposites, and nanostructured metal oxide nanoparticles are playing an increasing role in the design of sensing and biosensing systems for mycotoxin determination. Furthermore, these nanobiosystems are also bringing advantages in terms of the design of novel food toxin detection strategies. We will focus on some of the recent results related to fabrication of nanomaterial-based biosensors for food toxin detection obtained in our laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kralj Cigić, I., & Prosen, H. (2009). An overview of conventional and emerging analytical methods for the determination of mycotoxins. International Journal of Molecular Sciences, 10(1), 62–115.

    Article  Google Scholar 

  2. Palchetti, I., & Mascini, M. (2008). Electroanalytical biosensors and their potential for food pathogen and toxin detection. Analytical and Bioanalytical Chemistry, 391(2), 455–471.

    Article  CAS  Google Scholar 

  3. Ligler, F. S., Taitt, C. R., Shriver-Lake, L. C., Sapsford, K. E., Shubin, Y., & Golden, J. P. (2003). Array biosensor for detection of toxins. Analytical and Bioanalytical Chemistry, 377(3), 469–477.

    Article  CAS  Google Scholar 

  4. Rasooly, A., & Herold, K. E. (2006). Biosensors for the analysis of food- and waterborne pathogens and their toxins. Journal of AOAC International, 89(3), 873–883.

    CAS  Google Scholar 

  5. Vidal, J. C., Bonel, L., Ezquerra, A., Hernández, S., Bertolín, J. R., Cubel, C., et al. (2013). Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosensors and Bioelectronics, 49, 146–158.

    Article  CAS  Google Scholar 

  6. Kaushik, A., Arya, S. K., Vasudev, A., & Bhansali, S. (2013). Recent advances in detection of ochratoxin-A. Open Journal of Applied Biosensor, 2, 1.

    Article  CAS  Google Scholar 

  7. Wang, J. (2005). Carbon nanotube based electrochemical biosensors: a review. Electroanalysis, 17(1), 7–14.

    Article  CAS  Google Scholar 

  8. Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2011). Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 26(12), 4637–4648.

    Article  CAS  Google Scholar 

  9. Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., et al. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185, 258–264.

    Article  CAS  Google Scholar 

  10. Srivastava, S., Kumar, V., Ali, M. A., Solanki, P. R., Srivastava, A., Sumana, G., et al. (2013). Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 5(7), 3043–3051.

    Article  CAS  Google Scholar 

  11. Hirsch, A. (2010). The era of carbon allotropes. Nature Materials, 9(11), 868–871.

    Article  CAS  Google Scholar 

  12. Wu, S., Duan, N., Shi, Z., Fang, C., & Wang, Z. (2014). Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry, 86(6), 3100–3107.

    Article  CAS  Google Scholar 

  13. Linting, Z., Ruiyi, L., Zaijun, L., Qianfang, X., Yinjun, F., & Junkang, L. (2012). An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors and Actuators B: Chemical, 174, 359–365.

    Article  Google Scholar 

  14. Hu, L., Wu, H., La Mantia, F., Yang, Y., & Cui, Y. (2010). Thin, flexible secondary Li-ion paper batteries. ACS Nano, 4(10), 5843–5848.

    Article  CAS  Google Scholar 

  15. de las Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74–85.

    Article  Google Scholar 

  16. Mostafavi, S., Mehrnia, M., & Rashidi, A. (2009). Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination, 238(1), 271–280.

    Article  CAS  Google Scholar 

  17. Srivastava, A., Srivastava, S. Kalaga K. (2013). Carbon nanotube membrane filters. Springer handbook of nanomaterials: Springer, p. 1099–1116.

  18. Cheng, H.-M., Yang, Q.-H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39(10), 1447–1454.

    Article  CAS  Google Scholar 

  19. Dillon, A. C., Jones, K., Bekkedahl, T., Kiang, C., Bethune, D., & Heben, M. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377–379.

    Article  CAS  Google Scholar 

  20. Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., & Gruner, G. (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Letters, 9(5), 1872–1876.

    Article  CAS  Google Scholar 

  21. Zhang, L. L., & Zhao, X. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531.

    Article  CAS  Google Scholar 

  22. Cha, C., Shin, S. R., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2013). Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano, 7(4), 2891–2897.

    Article  CAS  Google Scholar 

  23. Wohlstadter, J. N., Wilbur, J. L., Sigal, G. B., Biebuyck, H. A., Billadeau, M. A., Dong, L., et al. (2003). Carbon nanotube‐based biosensor. Advanced Materials, 15(14), 1184–1187.

    Article  CAS  Google Scholar 

  24. Coleman, J. N., Khan, U., Blau, W. J., & Gun’ko, Y. K. (2006). Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624–1652.

    Article  CAS  Google Scholar 

  25. Kim, B., & Sigmund, W. M. (2004). Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir, 20(19), 8239–8242.

    Article  CAS  Google Scholar 

  26. Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., et al. (2003). Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. The Journal of Physical Chemistry B, 107(26), 6292–6299.

    Article  CAS  Google Scholar 

  27. Rivas, G. A., Rubianes, M. D., Rodríguez, M. C., Ferreyra, N. F., Luque, G. L., Pedano, M. L., et al. (2007). Carbon nanotubes for electrochemical biosensing. Talanta, 74(3), 291–307.

    Article  CAS  Google Scholar 

  28. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Article  CAS  Google Scholar 

  29. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., et al. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457–460.

    Article  CAS  Google Scholar 

  30. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., et al. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563–568.

    Article  CAS  Google Scholar 

  31. Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224.

    Article  CAS  Google Scholar 

  32. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240.

    Article  CAS  Google Scholar 

  33. Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials, 22(40), 4467–4472.

    Article  CAS  Google Scholar 

  34. Pei, S., & Cheng, H.-M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210–3228.

    Article  CAS  Google Scholar 

  35. Pumera, M. (2010). Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146–4157.

    Article  CAS  Google Scholar 

  36. Pumera, M. (2011). Graphene in biosensing. Materials Today, 14(7), 308–315.

    Article  CAS  Google Scholar 

  37. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22(10), 1027–1036.

    Article  CAS  Google Scholar 

  38. Zhou, M., Zhai, Y., & Dong, S. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81(14), 5603–5613.

    Article  CAS  Google Scholar 

  39. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., & Poh, H. L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954–965.

    Article  CAS  Google Scholar 

  40. Harrison, B. S., & Atala, A. (2007). Carbon nanotube applications for tissue engineering. Biomaterials, 28(2), 344–353.

    Article  CAS  Google Scholar 

  41. Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications, 1, 16–17.

    Article  Google Scholar 

  42. Shi Kam, N. W., Jessop, T. C., Wender, P. A., & Dai, H. (2004). Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. Journal of the American Chemical Society, 126(22), 6850–6851.

    Article  Google Scholar 

  43. Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130(33), 10876–10877.

    Article  CAS  Google Scholar 

  44. Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. (2010). Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6(4), 537–544.

    Article  CAS  Google Scholar 

  45. Spencer, P.S., ed. (1995). Lathyrism, handbook of clinical neurology. Amsterdam: Elsevier.

  46. Meda, H. A., Diallo, B., Buchet, J. P., Lison, D., Barennes, H., Ouangre, A., et al. (1999). Epidemic of fatal encephalopathy in preschool children in Burkina Faso and consumption of unripe ackee (Blighia sapida) fruit. Lancet, 353, 536–540.

    Article  CAS  Google Scholar 

  47. Taylor, S.L., Hefle, S.L. & Gauger, B.J., ed. (2001). Food toxicology. Florida: CRC Press.

  48. Bush, R. K., & Hefle, S. L. (1996). Food allergens. Critical Reviews in Food Science & Nutrition, 36(S1), 119–163.

    Article  Google Scholar 

  49. Malish, D., Glovsky, M., Hoffman, D., Ghekiere, L., & Hawkins, J. (1981). Anaphylaxis after sesame seed ingestion. Journal of Allergy and Clinical Immunology, 67(1), 35–38.

    Article  CAS  Google Scholar 

  50. World Health Organization (WHO). (1997). Food safety and foodborne diseases. World Health Statistics Quarterly.

  51. Dominguez, H. J., Paz, B., Daranas, A. H., Norte, M., Franco, J. M., & Fernández, J. J. (2010). Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups: characterization, analysis and human health implications. Toxicon, 56(2), 191–217.

    Article  CAS  Google Scholar 

  52. Etheridge, S. M. (2010). Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon, 56(2), 108–122.

    Article  CAS  Google Scholar 

  53. Lefebvre, K. A., & Robertson, A. (2010). Domoic acid and human exposure risks: a review. Toxicon, 56(2), 218–230.

    Article  CAS  Google Scholar 

  54. Köppen, R., Koch, M., Siegel, D., Merkel, S., Maul, R., & Nehls, I. (2010). Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied Microbiology and Biotechnology, 86(6), 1595–1612.

    Article  Google Scholar 

  55. Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses—an overview. International Journal of Food Microbiology, 119(1), 3–10.

    Article  CAS  Google Scholar 

  56. Turner, N. W., Subrahmanyam, S., & Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins: a review. Analytica Chimica Acta, 632(2), 168–180.

    Article  CAS  Google Scholar 

  57. Van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food. Analytical and Bioanalytical Chemistry, 389(1), 147–157.

    Article  CAS  Google Scholar 

  58. Commission regulation (EC) no. 1881/2006. (2006). Official Journal of the European Communities: Legis, 364, 5.

    Google Scholar 

  59. Ellis, W., Smith, J., Simpson, B., Oldham, J., & Scott, P. M. (1991). Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Critical Reviews in Food Science & Nutrition, 30(4), 403–439.

    Article  CAS  Google Scholar 

  60. Ngindu, A., Kenya, P., Ocheng, D., Omondi, T., Ngare, W., Gatei, D., et al. (1982). Outbreak of acute hepatitis caused by aflatoxin poisoning in Kenya. The Lancet, 319(8285), 1346–1348.

    Article  Google Scholar 

  61. Probst, C., Njapau, H., & Cotty, P. J. (2007). Outbreak of an acute aflatoxicosis in Kenya in 2004: identification of the causal agent. Applied and Environmental Microbiology, 73(8), 2762–2764.

    Article  CAS  Google Scholar 

  62. Peckham, J. C., Doupnik, B., & Jones, O. H. (1971). Acute toxicity of ochratoxins A and B in chicks. Applied Microbiology, 21(3), 492–494.

    CAS  Google Scholar 

  63. Pfohl‐Leszkowicz, A., & Manderville, R. A. (2007). Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Molecular Nutrition & Food Research, 51(1), 61–99.

    Article  Google Scholar 

  64. Friis, P., Hasselager, E., & Krogh, P. (1969). Isolation of citrinin and oxalic acid from Penicillium viridicatum Westling and their nephrotoxicity in rats and pigs. Acta Pathologica Microbiologica Scandinavica, 77(3), 559–560.

    Article  CAS  Google Scholar 

  65. Datta, S. C., & Ghosh, J. J. (1983). Action of citreoviridin, a mycotoxin from Penicilliumcitreoviride on the gamma-aminobutyric acid metabolism of the central nervous system. Toxicon, 21, 89–92.

    Article  Google Scholar 

  66. Ueno, Y. (1970). Production of citreoviridin, a neurotic mycotoxin of Pénicillium citreo-viride Biourge. Production of citreoviridin, a neurotic mycotoxin of Penicillium citreo-viride Biourge, 115–32.

  67. Dutton, M. F. (1996). Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacology & Therapeutics, 70(2), 137–161.

    Article  CAS  Google Scholar 

  68. Gelderblom, W., Jaskiewicz, K., Marasas, W., Thiel, P., Horak, R., Vleggaar, R., et al. (1988). Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environmental Microbiology, 54(7), 1806–1811.

    CAS  Google Scholar 

  69. Norred, W. P., & Voss, K. A. (1994). Toxicity and role of fumonisins in animal diseases and human esophageal cancer. Journal of Food Protection, 57(6), 522–527.

    CAS  Google Scholar 

  70. Johanning, E. & Ammann, H. M. (2003). Encyclopedia of Environmental Microbiology, John Wiley & Sons, Inc.

  71. Osswald, H., Frank, H., Komitowski, D., & Winter, H. (1976). Long-term testing of patulin administered orally to Sprague-Dawley rats and Swiss mice. Food and Cosmetics Toxicology, 16(3), 243–247.

    Article  Google Scholar 

  72. Ueno, Y. (1984). Toxicological features of T-2 toxin and related trichothecenes. Fundamental and Applied Toxicology, 4(2), S124–S132.

    Article  CAS  Google Scholar 

  73. Shier, W., Shier, A., Xie, W., & Mirocha, C. (2001). Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon, 39(9), 1435–1438.

    Article  CAS  Google Scholar 

  74. Krska, R., & Molinelli, A. (2007). Mycotoxin analysis: state-of-the-art and future trends. Analytical and Bioanalytical Chemistry, 387(1), 145–148.

    Article  CAS  Google Scholar 

  75. Patterson, D., & Roberts, B. (1979). Mycotoxins in animal feedstuffs: sensitive thin layer chromatographic detection of aflatoxin, ochratoxin A, sterigmatocystin, zearalenone, and T-2 toxin. Journal-Association of Official Analytical Chemists, 62(6), 1265.

    CAS  Google Scholar 

  76. Nakajima, M., Tsubouchi, H., Miyabe, M., & Ueno, Y. (1997). Survey of aflatoxin B1 and ochratoxin A in commercial green coffee beans by high‐performance liquid chromatography linked with immunoaffinity chromatography. Food and Agricultural Immunology, 9(2), 77–83.

    Article  CAS  Google Scholar 

  77. Candlish, A., Stimson, W., & Smith, J. (1985). A monoclonal antibody to aflatoxin B1: detection of the mycotoxin by enzyme immunoassay. Letters in Applied Microbiology, 1(3), 57–61.

    Article  CAS  Google Scholar 

  78. Lee, N. A., Wang, S., Allan, R. D., & Kennedy, I. R. (2004). A rapid aflatoxin B1 ELISA: development and validation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. Journal of Agricultural and Food Chemistry, 52(10), 2746–2755.

    Article  CAS  Google Scholar 

  79. Xiulan, S., Xiaolian, Z., Jian, T., Zhou, J., & Chu, F. (2005). Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. International Journal of Food Microbiology, 99(2), 185–194.

    Article  Google Scholar 

  80. Gerard, M., Chaubey, A., & Malhotra, B. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345–359.

    Article  CAS  Google Scholar 

  81. Pandey, P., Datta, M., & Malhotra, B. (2008). Prospects of nanomaterials in biosensors. Analytical Letters, 41(2), 159–209.

    Article  CAS  Google Scholar 

  82. Solanki, P. R., Kaushik, A., Agrawal, V. V., & Malhotra, B. D. (2011). Nanostructured metal oxide-based biosensors. NPG Asia Materials, 3(1), 17–24.

    Article  Google Scholar 

  83. Ansari, A. A., Kaushik, A., Solanki, P., & Malhotra, B. (2008). Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 10(9), 1246–1249.

    Article  CAS  Google Scholar 

  84. Arya, S. K., Solanki, P. R., Datta, M., & Malhotra, B. D. (2009). Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors and Bioelectronics, 24(9), 2810–2817.

    Article  CAS  Google Scholar 

  85. Jacobs, C. B., Peairs, M. J., & Venton, B. J. (2010). Review: carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662(2), 105–127.

    Article  CAS  Google Scholar 

  86. Pumera, M. (2009). Electrochemistry of graphene: new horizons for sensing and energy storage. The Chemical Record, 9(4), 211–223.

    Article  CAS  Google Scholar 

  87. Molina, P. G., Zón, M. A., & Fernández, H. (2008). Novel studies about the electrooxidation of a deoxynivalenol (DON) mycotoxin reduction product adsorbed on glassy carbon and carbon paste electrodes. Electroanalysis, 20(15), 1633–1638.

    Article  CAS  Google Scholar 

  88. Hajian, R., & Ensafi, A. (2009). Determination of aflatoxins B1 and B2 by adsorptive cathodic stripping voltammetry in groundnut. Food Chemistry, 115(3), 1034–1037.

    Article  CAS  Google Scholar 

  89. Sc, L., Chen, J., Cao, H., Yao, D. S., & Liu, D. L. (2011). Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control, 22(1), 43–49.

    Article  Google Scholar 

  90. Jin, X., Jin, X., Chen, L., Jiang, J., Shen, G., & Yu, R. (2009). Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosensors and Bioelectronics, 24(8), 2580–2585.

    Article  CAS  Google Scholar 

  91. Jin, X., Jin, X., Liu, X., Chen, L., Jiang, J., Shen, G., et al. (2009). Biocatalyzed deposition amplification for detection of aflatoxin B1 based on quartz crystal microbalance. Analytica Chimica Acta, 645(1), 92–97.

    Article  CAS  Google Scholar 

  92. Liu, Y., Qin, Z., Wu, X., & Jiang, H. (2006). Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal, 32(3), 211–217.

    Article  CAS  Google Scholar 

  93. Rameil, S., Schubert, P., Grundmann, P., Dietrich, R., & Märtlbauer, E. (2010). Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor. Analytica Chimica Acta, 661(1), 122–127.

    Article  CAS  Google Scholar 

  94. Pohanka, M., Malir, F., Roubal, T., & Kuca, K. (2008). Detection of aflatoxins in capsicum spice using an electrochemical immunosensor. Analytical Letters, 41(13), 2344–2353.

    Article  CAS  Google Scholar 

  95. Parker, C. O., Lanyon, Y. H., Manning, M., Arrigan, D. W., & Tothill, I. E. (2009). Electrochemical immunochip sensor for aflatoxin M1 detection. Analytical Chemistry, 81(13), 5291–5298.

    Article  CAS  Google Scholar 

  96. Vig, A., Radoi, A., Muñoz-Berbel, X., Gyemant, G., & Marty, J.-L. (2009). Impedimetric aflatoxin M1 immunosensor based on colloidal gold and silver electrodeposition. Sensors and Actuators B: Chemical, 138(1), 214–220.

    Article  CAS  Google Scholar 

  97. Zaijun, L., Zhongyun, W., Xiulan, S., Yinjun, F., & Peipei, C. (2010). A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel–ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen. Talanta, 80(5), 1632–1637.

    Article  Google Scholar 

  98. Liu, Y., Qin, Z., Wu, X., & Jiang, H. (2006). Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal, 32(3), 211–217.

    Article  CAS  Google Scholar 

  99. Piermarini, S., Micheli, L., Ammida, N., Palleschi, G., & Moscone, D. (2007). Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics, 22(7), 1434–1440.

    Article  CAS  Google Scholar 

  100. Owino, J. H., Arotiba, O. A., Hendricks, N., Songa, E. A., Jahed, N., Waryo, T. T., et al. (2008). Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors, 8(12), 8262–8274.

    Article  CAS  Google Scholar 

  101. Pemberton, R., Pittson, R., Biddle, N., Drago, G., & Hart, J. (2006). Studies towards the development of a screen printed carbon electrochemical immunosensor array for mycotoxins: a sensor for aflatoxin B1. Analytical Letters, 39(8), 1573–1586.

    Article  CAS  Google Scholar 

  102. Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., Mathur, R. & Malhotra, B. D. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185, 258–264.

  103. Accepted in the special issue on Applied Biochemistry and Biotechnology 2014. doi:10.1007/s12010-014-0965-4.

Download references

Acknowledgments

We thank Dr Anchal Srivastava (Banaras Hindu University, India) and Dr G. Sumana (CSIR-National Physical Laboratory, India) for interesting discussions. S.S. acknowledges the financial support from CSIR (SRF: 31/001(0302)/2008-EMRI), New Delhi, India. The financial support received from Department of Science and Technology, India (Grant No. DST/TSG/ME/2008/18) and Indian Council of Medical Research, India (Grant No. ICMR/5/3/8/91/GM/2010-RHN) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bansi D. Malhotra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhotra, B.D., Srivastava, S., Ali, M.A. et al. Nanomaterial-Based Biosensors for Food Toxin Detection. Appl Biochem Biotechnol 174, 880–896 (2014). https://doi.org/10.1007/s12010-014-0993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0993-0

Keywords

Navigation