Skip to main content
Log in

Production of Cellulolytic Enzymes and Application of Crude Enzymatic Extract for Saccharification of Lignocellulosic Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the optimal conditions for production of cellulolytic enzymes by Trichoderma reesei NRRL-6156 using the solid-state fermentation were assessed in conical flasks and validated in a packed-bed bioreactor. Afterwards, the crude enzymatic extract obtained in the optimized condition was used for hydrolysis of sugarcane bagasse in water and ultrasound baths. The enzyme activities determined in this work were filter paper, exocellulase, endocellulase, and xylanase. The optimized condition for production was moisture content 68.6 wt% and soybean bran concentration 0.9 wt%. The crude enzymatic extract was applied for hydrolysis of sugarcane bagasse, being obtained 224.0 and 229 g kg−1 at temperature of 43.4 °C and concentration of enzymatic extract of 18.6 % in water and ultrasound baths, respectively. The yields obtained are comparable to commercial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Delabona, P. S., Cota, J., Hoffmam, Z. B., Paixão, D. A. A., Farinas, C. S., Cairo, J. P. L. F., Lima, D. J., Squina, F. M., Ruller, R., & Pradella, J. G. C. (2013). Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and a-L-arabinofuranosidase. Bioresource Technology, 131, 500–507.

    Article  Google Scholar 

  2. Gottschalk, L. M. F., Oliveira, R. A., & Bom, E. P. S. (2010). Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochemical Engineering Journal, 51, 72–78.

    Article  CAS  Google Scholar 

  3. Maeda, R. N., Serpa, V. I., Rocha, V. A. L., Mesquita, R. A. A., Santa Anna, L. M. N., Castro, A. M., Driemeierd, C. E., Pereira, N., Jr., & Polikarpov, I. (2011). Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry, 46, 1196–1201.

    Article  CAS  Google Scholar 

  4. Bon, E. P. S., & Ferrara, M. A. (2008). Bioethanol production via enzymatic hydrolysis of cellulosic biomass. In FAO symposium on the role of agricultural biotechnologies for production of bioenergy in developing countries. Roma: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  5. Ferreira-Leitão, V., Gottschalk, L. M. F., Ferrara, M. A., Nepomuceno, A. L., Molinari, H. B. C., & Bon, E. P. S. (2010). Biomass residues in Brazil: availability and potential uses. Waste and Biomass Valorization, 1, 65–76.

    Article  Google Scholar 

  6. Dhilon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34, 1160–1167.

    Article  Google Scholar 

  7. Latifian, M., Hamidi-Esfahani, Z., & Barzegar, M. (2007). Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 98, 3634–3637.

    Article  CAS  Google Scholar 

  8. Rocky-Salimi, K., & Hamidi-Esfahani, Z. (2010). Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Trichoderma reesei QM9414 using response surface methodology. Food and Bioproducts Processing, 88, 61–66.

    Article  CAS  Google Scholar 

  9. Soni, R., Nazir, A., & Chadha, B. S. (2010). Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Industrial Crops and Products, 31, 277–283.

    Article  CAS  Google Scholar 

  10. Szijártó, N., Faigl, Z., Réczey, K., Mézes, M., & Bersényi, A. (2004). Cellulase fermentation on a novel substrate (waste cardboard) and subsequent utilization of home-produced cellulase and commercial amylase in a rabbit feeding trial. Industrial Crops and Products, 20, 49–57.

    Article  Google Scholar 

  11. Velmurugan, R., & Muthukumar, K. (2012). Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochemical Engineering Journal, 63, 1–9.

    Article  CAS  Google Scholar 

  12. Jorgensen, H., & Olsson, L. (2006). Production of cellulases by penicillium brasilianum IBT 20888—effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 38, 381–390.

    Article  CAS  Google Scholar 

  13. Szabó, O. E., & Csiszár, E. (2013). The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydrate Polymers, 98, 1483–1489.

    Article  Google Scholar 

  14. Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation on biochemical engineering/technology. Biochemical Engineering Journal, 44, 60–72.

    Article  CAS  Google Scholar 

  15. Kwiatkowska, B., Bennet, J., Akunna, J., Walker, G. M., & Bremner, D. H. (2011). Stimulation of bioprocesses by ultrasound. Biotechnology Advances, 29, 768–780.

    Article  CAS  Google Scholar 

  16. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  17. Miller, G. L. (1959). Use of dinitrosalicylic acid and reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–427.

    Article  CAS  Google Scholar 

  18. Mazutti, M. A., Zabot, G., Boni, G., Skovronski, A., Oliveira, D., Luccio, M. D., Rodrigues, M. I., Treichel, H., & Maugeri, F. (2010). Kinetics of inulinase production by solid-state fermentation in a packed-bed bioreactor. Food Chemistry, 120, 163–173.

    Article  CAS  Google Scholar 

  19. Jiang, X., Geng, A., He, N., & Li, Q. (2011). New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of Bioscience and Bioengineering, 111, 121–127.

    Article  CAS  Google Scholar 

  20. Kupski, L., Pagnussatt, F. A., Buffon, J. G., & Furlong, E. B. (2014). Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Applied Biochemistry and Biotechnology, 172, 458–468.

    Article  CAS  Google Scholar 

  21. Raghuwanshi, S., Deswal, D., Karp, M., & Kuhad, R. C. (2014). Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel, 124, 183–189.

    Article  CAS  Google Scholar 

  22. Reis, L., Fontana, R. C., Delabona, P. S., Lima, D. J. S., Camassola, M., Pradella, J. G. C., & Dillon, A. J. P. (2013). Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresource Technology, 146, 597–603.

    Article  Google Scholar 

  23. Werle, L. B., Garcia, J. C., Kuhn, R. C., Schwaab, M., Foletto, E. L., Cancelier, A., Janh, S. L., & Mazutti, M. A. (2013). Ultrasound-assisted acid hydrolysis of palm leaves (Roystonea oleracea) for production of fermentable sugars. Industrial Crops and Products, 45, 128–132.

    Article  CAS  Google Scholar 

  24. Lunelli, F. C., Sfalcin, P., Souza, M., Zimmermann, E., Dal Prá, V., Foletto, E. L., Jahn, S. L., Kuhn, R. C., & Mazutti, M. A. (2014). Ultrasound-assisted enzymatic hydrolysis of sugarcane bagasse for the production of fermentable sugars. Biosystems Engineering, 124, 24–28.

    Article  Google Scholar 

  25. Silveira, M. H., Siqueira, F. G., Rau, M., Silva, L., Moreira, L. R. S., Ferreira-Filho, E. X., & Andreaus, J. (2014). Hydrolysis of sugarcane bagasse with enzyme preparations from Acrophialophora nainiana grown on different carbon sources. Biocatalysis and Biotransformation, 32, 53–63.

    Article  CAS  Google Scholar 

  26. Pereira, B. M. P., Alvarez, T. M., Delabona, P. S., Dillon, A. J. P., Squina, F. M., & Pradella, J. G. C. (2013). Cellulase on-site production from sugar cane bagasse using Penicillium echinulatum. Bioenergy Research, 6, 1052–1062.

    Article  CAS  Google Scholar 

  27. Benazzi, T., Calgaroto, S., Astolfi, V., Dalla Rosa, C., Oliveira, J. V., & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme and Microbial Technology, 52, 247–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank SCIT-RS for the financial support of this work as well as CAPES and CNPq for scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio A. Mazutti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparotto, J.M., Werle, L.B., Foletto, E.L. et al. Production of Cellulolytic Enzymes and Application of Crude Enzymatic Extract for Saccharification of Lignocellulosic Biomass. Appl Biochem Biotechnol 175, 560–572 (2015). https://doi.org/10.1007/s12010-014-1297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1297-0

Keywords

Navigation