Skip to main content
Log in

The Removal of Hydrogen Sulfide from Biogas in a Microaerobic Biotrickling Filter Using Polypropylene Carrier as Packing Material

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biological removal of hydrogen sulfide in biogas is an increasingly adopted alternative to the conventional physicochemical processes, because of its economic and environmental benefits. In this study, a microaerobic biofiltration system packed with polypropylene carrier was used to investigate the removal of high concentrations of H2S contained in biogas from an anaerobic digester. The results show that H2S in biogas was removed completely under different inlet concentrations of H2S from 2065 ± 234 to 7818 ± 131 ppmv, and the elimination capacity of H2S in the filter achieved about 122 g H2S/m3/h. It was observed that the content of CH4 in biogas increased after the biogas biodesulfurization process, which was beneficial for the further utilization of biogas. The elemental sulfur and sulfate were the main sulfur species of H2S degradation, and elemental sulfur was dominant (about 80 %) under high inlet H2S concentration. The results of terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in situ hybridization (FISH) show that the population of sulfide-oxidizing bacteria (SOB) species in the filter changed with different concentrations of H2S. The microaerobic biofiltration system allows the potential use of biogas and the recovery of elemental sulfur resource simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Appels, L., Baeyens, J., Degreve, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.

    Article  CAS  Google Scholar 

  2. Schieder, D., Quicker, P., Schneider, R., Winter, H., Prechtl, S., & Faullstich, M. (2003). Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation. Water Science and Technology, 48, 209–212.

    CAS  Google Scholar 

  3. Montebello, A. M., Fernández, M., Almenglo, F., Ramírez, M., Cantero, D., Baeza, M., & Gabriel, D. (2012). Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters. Chemical Engineering Journal, 200–202, 237–246.

    Article  Google Scholar 

  4. Fortuny, M., Baeza, J. A., Gamisans, X., Casas, C., Lafuente, J., Deshusses, M. A., & Gabriel, D. (2008). Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere, 71, 10–17.

    Article  CAS  Google Scholar 

  5. Jiang, X., Yan, R., & Tay, J. H. (2009). Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere, 75, 1350–1355.

    Article  CAS  Google Scholar 

  6. Syed, M., Soreanu, G., Falletta, P., & Béland, M. (2006). Removal of hydrogen sulfide from gas streams using biological processes—a review. Canadian Biosystems, 48, 1–14.

    Google Scholar 

  7. Valenzuela-Reyes, E., Casas-Flores, S., Isordia-Jasso, I., & Arriaga, S. (2014). Performance and bacterial population composition of an n-hexane degrading biofilter working under fluctuating conditions. Applied Biochemistry and Biotechnology, 174, 832–844.

    Article  CAS  Google Scholar 

  8. Fortuny, M., Gamisans, X., Deshusses, M. A., Lafuente, J., Casas, C., & Gabriel, D. (2011). Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters. Water Research, 45, 5665–5674.

    Article  CAS  Google Scholar 

  9. Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, 44, 73–94.

    Article  CAS  Google Scholar 

  10. Janssen, A. J. H., Ma, S. C., Lens, P., & Lettinga, G. (1997). Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnology and Bioengineering, 53, 32–40.

    Article  CAS  Google Scholar 

  11. Duan, H. Q., Koe, L. C. C., Yan, R., & Chen, X. G. (2006). Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter. Water Research, 40, 2629–2636.

    Article  CAS  Google Scholar 

  12. Gadre, R. V. (1989). Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnology and Bioengineering, 34, 410–414.

    Article  CAS  Google Scholar 

  13. Okabe, S., Odagiri, M., Ito, T., & Satoh, H. (2007). Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Applied and Environmental Microbiology, 73, 971–980.

    Article  CAS  Google Scholar 

  14. Maestre, J. P., Rovira, R., Alvarez-Hornos, F. J., Fortuny, M., Lafuente, J., Gamisans, X., & Gabriel, D. (2010). Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere, 80, 872–880.

    Article  CAS  Google Scholar 

  15. Amann, R. I. (1995). In situ identification of micro-organisms by whole-cell hybridization with rRNA-targeted nucleic acid probes (pp. 1–15). Dordrecht: Kluwer.

    Google Scholar 

  16. Zhao, Y., Wang, A., Ren, N., Zhao, Q., & Zadsar, M. (2007). Impacts of alkalinity drops on shifting of functional sulfate-reducers in a sulfate-reducing bioreactor characterized by FISH. Chinese Journal of Chemical Engineering, 15, 276–280.

    Article  CAS  Google Scholar 

  17. Maestre, J. P., Rovira, R., Gamisans, X., Kinney, K. A., Kirisits, M. J., Lafuente, J., & Gabriel, D. (2009). Characterization of the bacterial community in a biotrickling filter treating high loads of H2S by molecular biology tools. Water Science and Technology, 59, 1331–1337.

    Article  CAS  Google Scholar 

  18. APHA. (1999). Standard methods for the examination of water and wastewater. Washington DC, USA.

  19. Jiang, X., Yan, R., & Tay, J. H. (2008). Reusing H2S-exhausted carbon as packing material for odor biofiltration. Chemosphere, 73, 698–704.

    Article  CAS  Google Scholar 

  20. Spanjers, H., & Vanrolleghem, P. (1995). Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Science and Technology, 31, 105–114.

    Article  CAS  Google Scholar 

  21. Liang, C. H., Chiang, P. C., & Chang, E. E. (2007). Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters. Water Research, 41, 3241–3250.

    Article  CAS  Google Scholar 

  22. Ramirez-Saenz, D., Zarate-Segura, P. B., Guerrero-Barajas, C., & Garcia-Pena, E. I. (2009). H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. Journal of Hazardous Materials, 163, 1272–1281.

    Article  CAS  Google Scholar 

  23. Nikiema, J., Bibeau, L., Lavoie, J., Brzezinski, R., Vigneux, J., & Heitz, M. (2005). Biofiltration of methane: an experimental study. Chemical Engineering Journal, 113, 111–117.

    Article  CAS  Google Scholar 

  24. Chaiprapat, S., Mardthing, R., Kantachote, D., & Karnchanawong, S. (2011). Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochemistry, 46, 344–352.

    Article  CAS  Google Scholar 

  25. Nguyen, M. T., Appan, A., Tan, D. S., & Tan, S. K. (2014). Influence of small water surface perturbations on the reaeration process. Journal of Environmental Engineering, 140, 04013010. doi:10.1061/(ASCE)EE.1943-7870.0000791.

    Article  Google Scholar 

  26. Palumbo, J. E., & Brown, L. C. (2014). Assessing the performance of reaeration prediction equations. Journal of Environmental Engineering, 140, 04013013. doi:10.1061/(ASCE)EE.1943-7870.0000799.

    Article  Google Scholar 

  27. Wagner, M., Horn, M., & Daims, H. (2003). Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Current Opinion in Microbiology, 6, 302–309.

    Article  CAS  Google Scholar 

  28. Takano, B., Koshida, M., Fujiwara, Y., Sugimori, K., & Takayanagi, S. (1997). Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry, 38, 227–253.

    Article  CAS  Google Scholar 

  29. Odintsova, E. V., Wood, A. P., & Kelly, D. P. (1993). Chemolithoautotrophic growth of Thiothrix ramosa. Archives of Microbiology, 160, 152–157.

    Article  CAS  Google Scholar 

  30. Nielsen, P. H., de Muro, M. A., & Nielsen, J. L. (2000). Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environmental Microbiology, 2, 389–398.

    Article  CAS  Google Scholar 

  31. Kanagawa, T., Kamagata, Y., Aruga, S., Kohno, T., Horn, M., & Wagner, M. (2000). Phylogenetic analysis of and oligonucleotide probe development for Eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Applied and Environmental Microbiology, 66, 5043–5052.

    Article  CAS  Google Scholar 

  32. Nielsen, P. H., Andreasen, K., Wagner, M., Blackall, L. L., Lemmer, H., & Seviour, R. J. (1998). Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Science and Technology, 37, 423–440.

    Article  CAS  Google Scholar 

  33. Pernelle, J. J., Cotteux, E., & Duchèn, P. (1998). Effectiveness of oligonucleotide probes targeted against Thiothrix nivea and type 021N 16S rRNA for in situ identification and population monitoring in activated sludges. Water Science and Technology, 37, 431–440.

    Article  CAS  Google Scholar 

  34. Aruga, S., Kamagata, Y., Kohno, T., Hanada, S., Nakamura, K., & Kanagawa, T. (2002). Characterization of filamentous Eikelboom type 021N bacteria and description of Thiothrix disciformis sp nov and Thiothrix flexilis sp nov. International Journal of Systematic and Evolutionary Microbiology, 52, 1309–1316.

    Article  CAS  Google Scholar 

  35. Howarth, R., Unz, R. F., Seviour, E. M., Seviour, R. J., Blackall, L. L., Pickup, R. W., Jones, J. G., Yaguchi, J., & Head, I. M. (1999). Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp nov., Thiothrix unzii sp nov., Thiothrix fructosivorans sp nov and Thiothrix defluvii sp nov. International Journal of Systematic Bacteriology, 49, 1817–1827.

    Article  CAS  Google Scholar 

  36. Takeda, M., Kondo, K., Yamada, M., Sumikawa, M., Koizumi, J. I., Mashima, T., & Katahira, M. (2012). Presence of alternating glucosaminoglucan in the sheath of Thiothrix nivea. International Journal of Biological Macromolecules, 50, 236–244.

    Article  CAS  Google Scholar 

  37. Okabe, S., Ito, T., Sugita, K., & Satoh, H. (2005). Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Applied and Environmental Microbiology, 71, 2520–2529.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 51208324) and Ministry of Education of China (New Century Distinguished Young Scientist Supporting Plan, No. NCET-13-0387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Liang, H., Yang, S. et al. The Removal of Hydrogen Sulfide from Biogas in a Microaerobic Biotrickling Filter Using Polypropylene Carrier as Packing Material. Appl Biochem Biotechnol 175, 3763–3777 (2015). https://doi.org/10.1007/s12010-015-1545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1545-y

Keywords

Navigation