Skip to main content
Log in

Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oxalic acid was evaluated as an alternative reagent to mineral inorganic acid in pretreatment of corncob to achieve high xylose yield in addition to highly digestible solid residue. A quadratic polynomial model of xylose formation was developed for optimization of pretreatment process by the response surface methodology based on the impact factors of pretreatment temperature, reaction time, acid concentration, and solid-to-liquid ratio. The highest xylose yield was 94.3 % that was obtained under the pretreatment condition of 140 °C for 40 min with 0.5 wt% oxalic acid at a solid loading of 7.5 %. Under these conditions, the xylose yield results of verification experiments were very close to the model prediction, which indicated that the model was applicable. The solid residue generated under this condition also demonstrated a satisfactory enzymatic digestibility and fermentability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16, 577–583.

    Article  CAS  Google Scholar 

  2. Moe, S. T., Janga, K. K., Hertzberg, T., Hägg, M.-B., Øyaas, K., & Dyrset, N. (2012). Saccharification of lignocellulosic biomass for biofuel and biorefinery applications—a renaissance for the concentrated acid hydrolysis? Energy Procedia, 20, 50–58.

    Article  CAS  Google Scholar 

  3. Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenerg, 25, 1–28.

    Article  Google Scholar 

  4. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G., & Schols, H. A. (2007). Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  5. Kahar, P., Taku, K., & Tanaka, S. (2010). Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production. Journal of Bioscience and Bioengineering, 110, 453–458.

    Article  CAS  Google Scholar 

  6. He, Y.-C., Liu, F., Gong, L., Lu, T., Ding, Y., Zhang, D.-P., Qing, Q., & Zhang, Y. (2015). Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Applied Biochemistry and Biotechnology, 175, 1306–1317.

    Article  CAS  Google Scholar 

  7. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., & Brady, J. W. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  8. Zhou X, Xu J, Wang Z, Cheng JJ, Li R, & Qu R. (2012)._Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresource technology, 104, 823–827.

  9. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  10. Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86, 88–95.

    Article  CAS  Google Scholar 

  11. Zhang, T., Kumar, R., Tsai, Y.-D., Elander, R. T., & Wyman, C. E. (2015). Xylose yields and relationship to combined severity for dilute acid post-hydrolysis of xylooligomers from hydrothermal pretreatment of corn stover. Green Chemistry, 17, 394–403.

    Article  CAS  Google Scholar 

  12. Latif, F., & Rajoka, M. I. (2001). Production of ethanol and xylitol from corn cobs by yeasts. Bioresource Technology, 77, 57–63.

    Article  CAS  Google Scholar 

  13. Avci, A., Saha, B. C., Dien, B. S., Kennedy, G. J., & Cotta, M. A. (2013). Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresource Technology, 130, 603–612.

    Article  CAS  Google Scholar 

  14. Dong, Q., Zhang, S., Zhang, L., Ding, K., & Xiong, Y. (2015). Effects of four types of dilute acid washing on moso bamboo pyrolysis using Py-GC/MS. Bioresource Technology, 185, 62–69.

    Article  CAS  Google Scholar 

  15. Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource technology, 157, 68–76.

    Article  CAS  Google Scholar 

  16. Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. M. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46, 126–131.

    Article  CAS  Google Scholar 

  17. Qin, L., Liu, Z. H., Li, B. Z., Dale, B. E., & Yuan, Y. J. (2012). Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource Technology, 112, 319–326.

    Article  CAS  Google Scholar 

  18. Lu, Y. L., & Mosier, N. S. (2007). Biomimetic catalysis for hemicelluloses hydrolysis in corn stover. Biotechnology Progress, 23(1), 116–123.

    Article  CAS  Google Scholar 

  19. Mosier, S. N., Ladisch, C. M., & Ladisch, M. R. (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79, 610–618.

    Article  CAS  Google Scholar 

  20. Scordia, D., Cosentino, S. L., Lee, J.-W., & Jeffries, T. W. (2011). Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass and Bioenergy, 35, 3018–3024.

    Article  CAS  Google Scholar 

  21. Tan, I. S., & Lee, K. T. (2014). Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy, 78, 53–62.

    Article  CAS  Google Scholar 

  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory.

  23. Neuriter, M., Danner, H., Thomaser, C., Saidi, B., & Braun, R. (2002). Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology, 02, 50–58.

    Google Scholar 

  24. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  25. Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86, 88–95.

    Article  CAS  Google Scholar 

  26. Conde-Mejía, C., Jiménez-Gutiérrez, A., & El-Halwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection, 90, 189–202.

    Article  Google Scholar 

  27. Bujanga, N., Rodhia, M. N. M., Musaa, M., Subaria, F., Idrisa, N., Makhtara, N. S. M., & Ku Halim, K. H. (2013). Effect of dilute sulfuric acid hydrolysis of coconut dregs on chemical and thermal properties. Procedia Engineering, 68, 372–378.

    Article  Google Scholar 

  28. Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16, 535–545.

    Article  CAS  Google Scholar 

  29. Zhang, B., Wang, L., Shahbazi, A., Diallo, O., & Whitmore, A. (2011). Dilute-sulfuric acid pretreatment of cattails for cellulose conversion. Bioresource Technology, 102, 9308–9312.

    Article  CAS  Google Scholar 

  30. Wang, W., Zhang, P., Zhang, S., Li, F., Yu, J., & Lin, J. (2013). Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. Carbohydrate Polymers, 98, 1031–1038.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding from Jiangsu Natural Science Funds through the contract number of BK20140258 and Changzhou Sci & Tech Program through the grant number of CE20145053. We also acknowledge the Laboratory of Cellulosic Biofuel, Changzhou University, for providing the facilities and equipments used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Q., Huang, M., He, Y. et al. Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis. Appl Biochem Biotechnol 177, 1493–1507 (2015). https://doi.org/10.1007/s12010-015-1829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1829-2

Keywords

Navigation