Skip to main content

Advertisement

Log in

Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sumathi, S., Chai, S. P., & Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 12, 2404–2421.

    Article  CAS  Google Scholar 

  2. Agensi Inovasi Malaysia, (2012). National Biomass Strategy 2020: new wealth creation for Malaysia’s palm oil industry. Retrieved February 20, 2014 from http://www.feldaglobal.com/sitecontent/National%20Biomass%20Strategy%20Nov%202011%20FINAL.pdf.

  3. Economics and Industry Development Division, Malaysian Palm Oil Board. Overview of The Malaysian Oil Palm Industry 2013. Retrieved February 26, 2014 http://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2013.pdf.

  4. Ng, F.-Y., Yew, F.-K., Basiron, Y., & Sundram, K. (2011). A renewable future driven with Malaysian palm oil-based green technology. J. Oil Palm Environ., 2, 1–7.

    Article  Google Scholar 

  5. Kosugi, A., Tanaka, R., Magara, K., Murata, Y., Arai, T., Sulaiman, O., Hashim, R., Hamid, Z. A., Yahya, M. K., Yusof, M. N., Ibrahim, W. A., & Mori, Y. (2010). Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. Journal of Bioscience and Bioengineering, 110, 322–325.

    Article  CAS  Google Scholar 

  6. Loh, Y. F., Md-Tahir, P., & Yeoh, B. H. (2011). Density distribution of oil palm stem veneer and its influence on plywood mechanical properties. Journal of Applied Sciences, 11, 824–831.

    Article  Google Scholar 

  7. Mokhtar, A., Hassan, K., Aziz, A. A., & Wahid, M. B. (2011). Plywood from oil palm trunks. J. Oil Palm Res., 23, 1159–1165.

    Google Scholar 

  8. Chooklin, S., Kaewsichan, L., & Kaewsrichan, J. (2011). Potential use of Lactobacillus casei TISTR 1500 for the bioconversion from palmyra sap and oil palm sap to lactic acid. Electronic Journal of Biotechnology, 14, 1–13.

    Google Scholar 

  9. Payot, T., Chemaly, Z., & Fick, M. (1999). Lactic acid production by Bacillus coagulans-kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme and Microbial Technology, 24, 191–199.

    Article  CAS  Google Scholar 

  10. Ye, L., Hudari, M. S. B., Zhou, X., Zhang, D., Li, Z., & Wu, J. C. (2013). Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12. Applied Microbiology and Biotechnology, 97, 4831–4838.

    Article  CAS  Google Scholar 

  11. Sudesh, K., & Iwata, T. (2008). Sustainability of biobased and biodegradable plastics. CLEAN, 36, 433–442.

    CAS  Google Scholar 

  12. Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & Oliveira, R. P. S. (2013). Lactic acid properties, applications and production: a review. Trends. Food. Sci. Tech., 30, 70–83.

    Article  CAS  Google Scholar 

  13. Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59, 145–152.

    Article  CAS  Google Scholar 

  14. Qin, J., Zhao, B., Wang, X., Wang, L., Yu, B., Ma, Y., Ma, C., Tang, H., Sun, J., & Xu, P. (2009). Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PloS One, 4, e4359.

    Article  Google Scholar 

  15. Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., & Gokhale, D. (2008). Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Applied and Environmental Microbiology, 74, 333–335.

    Article  CAS  Google Scholar 

  16. Zhang, Z. Y., Jin, B., & Kelly, J. M. (2007). Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World Journal of Microbiology and Biotechnology, 23, 229–236.

    Article  CAS  Google Scholar 

  17. Jawad, A. H., Alkarkhi, A. F. M., Jason, O. C., Easa, A. M., & Nik Norulaini, N. A. (2013). Production of the lactic acid from mango peel waste—factorial experiment. J. King Saud Univ. Sci., 25, 39–45.

    Article  Google Scholar 

  18. Michelson, T., Kask, K., Jõgia, E., Talpsep, E., Suitso, I., & Nurk, A. (2006). L(+)-lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme and Microbial Technology, 39, 861–867.

    Article  CAS  Google Scholar 

  19. Rhee, M. S., Moritz, B. E., Xie, G., Glavina Del Rio, T., Dalin, E., Tice, H., Bruce, D., Goodwin, L., Chertkov, O., Brettin, T., Han, C., Detter, C., Pitluck, S., Land, M. L., Patel, M., Ou, M., Harbrucker, R., Ingram, L. O., & Shanmugam, K. T. (2011). Complete genome sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1. Standards in Genomic Sciences, 5, 331–340.

    Article  CAS  Google Scholar 

  20. Ye, L., Zhou, X., Hudari, M. S. B., Li, Z., & Wu, J. C. (2013). Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology, 132, 38–44.

    Article  CAS  Google Scholar 

  21. Singleton, V. L., & Rossi Jr., J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol.Vitic., 16, 144–158.

    CAS  Google Scholar 

  22. Hofvendahl, K., & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26, 87–107.

    Article  CAS  Google Scholar 

  23. Bastidas-Oyanedel, J. R., Fang, C., Almardeai, S., Javid, U., Yousuf, A., & Schmidt, J. E. (2016). Waste biorefinery in arid/semi-arid regions. Bioresource Technology, 215, 21–28.

    Article  CAS  Google Scholar 

  24. Hujanen, M., & Linko, Y. Y. (1996). Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Applied Microbiology and Biotechnology, 45, 307–313.

    Article  CAS  Google Scholar 

  25. Wang, L., Zhao, B., Liu, B., Yu, B., Ma, C., Su, F., Hua, D., Li, Q., Ma, Y., & Xu, P. (2010). Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101, 7908–7915.

    Article  CAS  Google Scholar 

  26. Eiteman, M. A., Lee, S. A., Altman, R., & Altman, E. (2009). A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnology and Bioengineering, 102, 822–827.

    Article  CAS  Google Scholar 

  27. Alriksson, B. (2006). Ethanol from lignocellulose: alkali detoxification of dilute-acid spruce hydrolysates (p. 28). Karlstad: Faculty of Technology and Science Biochemistry. Karlstads Universitet.

    Google Scholar 

  28. Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  29. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. 1: inhibition and detoxification. Bioresource Technology, 74, 17–24.

    Article  CAS  Google Scholar 

  30. Alriksson, B., Sjöde, A., Nilvebrant, N.-O., & Jönsson, L. J. (2006). Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology, 130, 599–611.

    Article  Google Scholar 

  31. Kamal, S. M. M., Mohamad, N. L., Abdullah, A. G. L., & Abdullah, N. (2011). Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Proced. Food Sci., 1, 908–913.

    Article  CAS  Google Scholar 

  32. Soto, M. L., Moure, A., Domínguez, H., & Parajó, J. C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: a review. Journal of Food Engineering, 105, 1–27.

    Article  CAS  Google Scholar 

  33. Larsson, S., Reimann, A., Nilvebrant, N.-O., & Jönsson, L. J. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Applied Biochemistry and Biotechnology, 77, 91–103.

    Article  Google Scholar 

  34. Karmakar, B., Vohra, R. M., Nandanwar, H., Sharma, P., Gupta, K. G., & Sobti, R. C. (2000). Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. Journal of Biotechnology, 80, 195–202.

    Article  CAS  Google Scholar 

  35. Sadler, W. R., & Trudinger, P. A. (1967). The inhibition of microorganisms by heavy metals. Mineralium Deposita, 2, 158–168.

    Article  CAS  Google Scholar 

  36. John, R., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524–534.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B. Kunasundari acknowledges the Japan International Research Center for Agricultural Sciences (JIRCAS) Fellowship for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kosugi.

Additional information

Highlights

• Pretreatment of oil palm sap for efficient lactic acid production.

• Alkaline pretreatment was effective in removing fermentation inhibitors from sap.

• A lactic acid yield of 92% was obtained from alkaline-pretreated sap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunasundari, B., Arai, T., Sudesh, K. et al. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid. Appl Biochem Biotechnol 183, 412–425 (2017). https://doi.org/10.1007/s12010-017-2454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2454-z

Keywords

Navigation