Skip to main content
Log in

Design and Assessment of a Dynamic Perfusion Bioreactor for Large Bone Tissue Engineering Scaffolds

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioreactors can be used to apply fluid flow in vitro to scaffolds to improve mass transport of media and apply mechanical forces to cells. In this study, we developed and tested an autoclavable, modular perfusion bioreactor suitable for large scaffolds. We investigated the effects of fluid flow induced shear stress (FFSS) on osteogenic differentiation of human embryonic stem cell-derived mesenchymal progenitors (hES-MP cells) cultured on large polyurethane (PU) scaffolds (30 mm diameter × 5 mm thickness) in osteogenesis induction media (OIM). After seeding, scaffolds were either maintained in static conditions or transferred to the bioreactor 3 days post-seeding and a continuous flow rate of 3.47 mL/min was applied. Alkaline phosphatase activity (ALP) was used to evaluate osteogenic differentiation and resazurin salt reduction (RR) to measure metabolic activity after 10 days. Cultures subjected to flow contained significantly more metabolically active cells and higher total DNA content, as well as significantly higher ALP activity compared to scaffolds grown in static culture. These results confirm the responsiveness of hES-MP cells to fluid flow stimuli, and present a cost-effective, user-friendly bioreactor capable of supporting the growth and differentiation of mesenchymal progenitor cells within scaffolds capable of filling large bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stops, A.J., Heraty, K.B., Browne, M., O'Brien, F.J., McHugh, P.E. (2010), Journal of biomechanics, 43(4): 618–626.

    Google Scholar 

  2. Venugopal, J., & Ramakrishna, S. (2005). Applications of Polymer Nanofibers in Biomedicine and Biotechnology. Applied Biochemistry and Biotechnology, 125(3), 147–157. https://doi.org/10.1385/ABAB:125:3:147.

    Article  CAS  Google Scholar 

  3. Mekala, N. K., Baadhe, R. R., & Potumarthi, R. (2014). Mass transfer aspects of 3D cell cultures in tissue engineering. Asia-Pacific Journal of Chemical Engineering, 9(3), 318–329. https://doi.org/10.1002/apj.1800.

    Article  CAS  Google Scholar 

  4. Plunkett, N., & O'Brien, F. J. (2011). Bioreactors in tissue engineering. Technology and Health Care, 19(1), 55–69. https://doi.org/10.3233/THC-2011-0605.

    Google Scholar 

  5. Martin, I., Wendt, D., & Heberer. (2004). TRENDS in. Biotechnology, 22(2), 80–86.

    CAS  Google Scholar 

  6. Yu, Y., Li, K., Bao, C., Liu, T., Jin, Y., Ren, H., & Yun, W. (2009). Ex Vitro Expansion of Human Placenta-Derived Mesenchymal Stem Cells in Stirred Bioreactor. Applied Biochemistry and Biotechnology, 159(1), 110–118. https://doi.org/10.1007/s12010-009-8556-5.

    Article  CAS  Google Scholar 

  7. Cartmell, S.H., Porter, B.D., García, A.J. and Guldberg, R.E. (2003), Tissue engineering, 9(6): 1197–1203.

    Google Scholar 

  8. Wendt, D., Marsano, A., Jakob, M., Heberer, M., Martin, I. (2003), Biotechnology and bioengineering, 84(2): 205–214.

    Google Scholar 

  9. Carver, S.E. and C.A. Heath. (1999), Biotechnology and bioengineering, 62: 166–74.

    Google Scholar 

  10. Jaasma, M. J., & O'brien, F. J. (2008). Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow. Tissue Engineering Part A, 14(7), 1213–1223. https://doi.org/10.1089/ten.tea.2007.0321.

    Article  CAS  Google Scholar 

  11. Bancroft, G. N., Sikavitsas, V. I., Van Den Dolder, J., Sheffield, T. L., Ambrose, C. G., Jansen, J. A., & Mikos, A. G. (2002). Proceedings of the. National Academy of Sciences, 2002., 99(20), 12600–12605. https://doi.org/10.1073/pnas.202296599.

    Article  CAS  Google Scholar 

  12. Vetsch, J.R., R. Müller, and S. Hofmann. (2015), Journal of tissue engineering and regenerative medicine, 9(8): 903–917.

    Google Scholar 

  13. Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., Kaplan, D., Langer, R., Vunjak-Novakovic, G. (2004), Annals of biomedical engineering, 32(1): 112–122.

    Google Scholar 

  14. Gomes, M.E., Holtorf, H.L., Reis, R.L., Mikos, A.G. (2006), Tissue engineering, 12(4): 801–809.

    Google Scholar 

  15. Yeatts, A. B., Both, S. K., Yang, W., Alghamdi, H. S., Yang, F., Fisher, J. P., & Jansen, J. A. (2013). In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds. Tissue Engineering Part A, 20(1–2), 139–146. https://doi.org/10.1089/ten.TEA.2013.0168.

    Google Scholar 

  16. Zermatten, E., Vetsch, J.R., Ruffoni, D., Hofmann, S., Müller, R., Steinfeld, A. (2014), Annals of biomedical engineering, 42(5): 1085–1094.

    Google Scholar 

  17. Fan, J., Jia, X., Huang, Y., Fu, B. M., & Fan, Y. (2015). Journal of Tissue Engineering and Regenerative Medicine, 9(12).

  18. Filipowska, J., Reilly, G. C., & Osyczka, A. (2016). A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnology and Bioengineering, 113(8), 1814–1824. https://doi.org/10.1002/bit.25937.

    Article  CAS  Google Scholar 

  19. Edwards, J. (2013), PhD Thesis, University of Sheffield, Sheffield, UK.

  20. Owen, R., Sherborne, C., Paterson, T., Green, N. H., Reilly, G. C., & Claeyssens, F. (2016). Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 54, 159–172. https://doi.org/10.1016/j.jmbbm.2015.09.019.

    Article  CAS  Google Scholar 

  21. Hoemann, C. D., El-Gabalawy, H., & McKee, M. D. (2009). In vitro osteogenesis assays: Influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathologie Biologie, 57(4), 318–323. https://doi.org/10.1016/j.patbio.2008.06.004.

    Article  CAS  Google Scholar 

  22. Farley, J. R., Wergedal, J. E., & Baylink, D. J. (1983). Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science, 222(4621), 330–333. https://doi.org/10.1126/science.6623079.

    Article  CAS  Google Scholar 

  23. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., Kon, E., & Marcacci, M. (2001). Repair of Large Bone Defects with the Use of Autologous Bone Marrow Stromal Cells. New England Journal of Medicine, 344(5), 385–386. https://doi.org/10.1056/NEJM200102013440516.

    Article  CAS  Google Scholar 

  24. S Sittichockechaiwut, A., Scutt, A.M., Ryan, A.J., Bonewald, L.F., Reilly, G.C. (2009), Bone, 44(5): 822–829.

  25. Sittichokechaiwut, A., Edwards, J. H., Scutt, A. M., & Reilly, G. C. (2010). European Cells & Materials, 20(4).

  26. Gaspar, D.A., Gomide, V and Monteiro, F.J. (2012), Biomatter, 2(4):167–175.

    Google Scholar 

  27. Wittkowske, C., Reilly, G. C., Lacroix, D., & Perrault, C. M. (2016). Frontiers in Bioengineering and Biotechnology, 4.

  28. Gurkan, U.A. and O. Akkus. (2008), Annals of biomedical engineering, 36(12): 1978–1991.

    Google Scholar 

  29. Ichinohe, N., Takamoto, T., & Tabata, Y. (2008). Proliferation, osteogenic differentiation, and distribution of rat bone marrow stromal cells in nonwoven fabrics by different culture methods. Tissue Engineering Part A, 14(1), 107–116. https://doi.org/10.1089/ten.a.2007.0021.

    Article  CAS  Google Scholar 

  30. Delaine-Smith, R. M., MacNeil, S., & Reilly, G. C. (2012). Matrix production and collagen structure are enhanced in two types of osteogenic progenitor cells by a simple fluid shear stress stimulus. European Cells & Materials, 24, 162–174.31. 10.22203/eCM.v024a12.

    Article  CAS  Google Scholar 

  31. Jaasma, M. J., Plunkett, N. A., & O’Brien, F. J. (2008). Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. Journal of Biotechnology, 133(4), 490–496. https://doi.org/10.1016/j.jbiotec.2007.11.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the British Council (UK) and Department of Biotechnology (DBT, Government of India; No: BT/IN/NBPP/BB/04/15-16) funding for this project under the Newton-Bhabha PhD Placement programme 2015. We would also like to acknowledge the funding provided by DBT, Govt of India, and Project No: BT/PR8056/MED/31/215/2013. Special thanks go to the Mechanical Engineering workshop, University of Sheffield, UK. We also thankful to Naveen Kumar Mekala (Postdoctoral Fellow, Wayne State University, USA) and Jasmin Monpora (ICT Mumbai) for helpful discussions about the experimental design. RO was funded by a UK Engineering and Physical Sciences Research Council (EPSRC) studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parcha Sreenivasa Rao.

Ethics declarations

Conflicts of Interest

The authors have no financial conflicts of interest.

Ethical Statement

We declare that there are no ethical issues for human or animal rights in the work presented here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, B., Owen, R., Bahmaee, H. et al. Design and Assessment of a Dynamic Perfusion Bioreactor for Large Bone Tissue Engineering Scaffolds. Appl Biochem Biotechnol 185, 555–563 (2018). https://doi.org/10.1007/s12010-017-2671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2671-5

Keywords

Navigation