Skip to main content

Advertisement

Log in

Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

KW:

Kitchen waste

KWHR:

Kitchen waste hydrolysis residue

MB:

Methylene blue

References

  1. Nair, R. B., Kabir, M. M., Lennartsson, P. R., Taherzadeh, M. J., & Horváth, I. S. (2017). Integrated process for ethanol, biogas, and edible filamentous fungi-based animal feed production from dilute phosphoric acid-pretreated wheat straw. Applied Biochemistry and Biotechnology, 184(1), 48–62. https://doi.org/10.1007/s12010-017-2525-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghimire, A., Frunzo, L., Pontoni, L., D’Antonio, G., Lens, P. N., Esposito, G., & Pirozzi, F. (2015). Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. Journal of Environmental Management, 152, 43–48. https://doi.org/10.1016/j.jenvman.2014.12.049

    Article  CAS  PubMed  Google Scholar 

  3. Li, Y. Y., Jin, Y. Y., & Li, J. H. (2016). Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment. Energy, 98, 155–167. https://doi.org/10.1016/j.energy.2016.01.013

    Article  CAS  Google Scholar 

  4. Zhang, B., He, P. J., Ye, N. F., & Shao, L. M. (2008). Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresource Technology, 99(4), 855–862. https://doi.org/10.1016/j.biortech.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  5. Li, P., Xie, Y., Zeng, Y., Hu, W., Kang, Y., Li, X., Wang, Y., Xie, T., & Zhang, Y. (2017). Bioconversion of welan gum from kitchen waste by a two-step enzymatic hydrolysis pretreatment. Applied Biochemistry and Biotechnology, 183(3), 820–832. https://doi.org/10.1007/s12010-017-2466-8

    Article  CAS  PubMed  Google Scholar 

  6. Li, P., Yu, Z., Yi, X., Xiang, L., Yan, K., Wang, Y., Xie, T., & Zhang, Y. (2017). Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production. Bioresource Technology, 223, 84–90. https://doi.org/10.1016/j.biortech.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  7. Vavouraki, A. I., Volioti, V., & Kornaros, M. E. (2014). Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes. Waste Management, 34(1), 167–173. https://doi.org/10.1016/j.wasman.2013.09.027

    Article  CAS  PubMed  Google Scholar 

  8. Wang, S., Boyjoo, Y., & Choueib, A. (2005). A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 60(10), 1401–1407. https://doi.org/10.1016/j.chemosphere.2005.01.091

    Article  CAS  PubMed  Google Scholar 

  9. Rabah H., Khaldi K., Choukchou-Braham A., Lerari-Zinai D., Bachari K. (2018). Comparative study of natural and synthetic clays used as supported catalysts in dyes degradation by advanced oxidation processes. In: A. Kallel, M. Ksibi, H. Ben Dhia, N. Khélifi (Eds.), Recent advances in environmental science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer. https://doi.org/10.1007/978-3-319-70548-4_71.

  10. Doğar, Ç., Gürses, A., Açıkyıldız, M., & Özkan, E. (2010). Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous solution using green algae Ulothrix sp. Colloids and Surfaces. B, Biointerfaces, 76(1), 279–285. https://doi.org/10.1016/j.colsurfb.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Iqbal, M. J., & Ashiq, M. N. (2007). Adsorption of dyes from aqueous solutions on activated charcoal. Journal of Hazardous Materials, 139(1), 57–66. https://doi.org/10.1016/j.jhazmat.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  12. Tan, K. B., Vakili, M., Horri, B. A., Poh, P. E., Abdullah, A. Z., & Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Separation and Purification Technology, 150, 229–242. https://doi.org/10.1016/j.seppur.2015.07.009

    Article  CAS  Google Scholar 

  13. Salleh, M. A. M., Mahmoud, D. K., Wan, A. W. A. K., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280(1-3), 1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  14. Robinson, T., Mcmullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  15. Eren, E., & Afsin, B. (2007). Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes and Pigments, 73(2), 162–167. https://doi.org/10.1016/j.dyepig.2005.11.004

    Article  CAS  Google Scholar 

  16. Vieira, A. P., Santana, S. A. A., Bezerra, C. W. B., Silva, H. A. S., Chaves, J. A. P., Melo, J. C. P. D., Filho, E. C. D. S., & Airoldi, C. (2009). Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. Journal of Hazardous Materials, 166(2-3), 1272–1278. https://doi.org/10.1016/j.jhazmat.2008.12.043

    Article  CAS  PubMed  Google Scholar 

  17. Pavan, F. A., Mazzocato, A. C., & Gushikem, Y. (2008). Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresource Technology, 99(8), 3162–3165. https://doi.org/10.1016/j.biortech.2007.05.067

    Article  CAS  PubMed  Google Scholar 

  18. Cengiz, S., & Cavas, L. (2008). Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresource Technology, 99(7), 2357–2363. https://doi.org/10.1016/j.biortech.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Peydayesh, M., & Rahbar-Kelishami, A. (2015). Adsorption of methylene blue onto Platanus orientalis leaf powder: kinetic, equilibrium and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 21, 1014–1019. https://doi.org/10.1016/j.jiec.2014.05.010

    Article  CAS  Google Scholar 

  20. Lagergren S. (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, Band 24, 1–39.

  21. Ho, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  22. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Engrs, 89, 31–59.

    Google Scholar 

  23. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 252, 2221–2295.

    Article  Google Scholar 

  24. Bhattacharyya, K. G., & Sarma, A. (2003). Adsorption characteristics of the dye, brilliant green, on neem leaf powder. Dyes and Pigments, 57(3), 211–222. https://doi.org/10.1016/S0143-7208(03)00009-3

    Article  CAS  Google Scholar 

  25. Weber, T. W., & Chakravorti, R. K. (1974). Pore and solid diffusion models for fixed bed adsorbers. AICHE Journal, 20(2), 228–238. https://doi.org/10.1002/aic.690200204

    Article  CAS  Google Scholar 

  26. Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  27. Zeng, G., Zhang, C., Huang, G., Yu, J., Wang, Q., Li, J., Xi, B., & Liu, H. (2006). Adsorption behavior of bisphenol A on sediments in Xiangjiang River, Central-South China. Chemosphere, 65(9), 1490–1499. https://doi.org/10.1016/j.chemosphere.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  28. Ruthven, & Douglas, M. (1984). Principles of adsorption and adsorption processes. New York: John Wiley and Sons.

    Google Scholar 

  29. Tang, R., Dai, C., Li, C., Liu, W., Gao, S., & Wang, C. (2017). Removal of methylene blue from aqueous solution using agricultural residue walnut shell: equilibrium, kinetic, and thermodynamic studies. Journal of Chemistry, 2017, 1–10. https://doi.org/10.1155/2017/8404965

    Article  CAS  Google Scholar 

  30. Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2016). Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian Journal of Chemistry, 9, S707–S716. https://doi.org/10.1016/j.arabjc.2011.07.021

    Article  CAS  Google Scholar 

  31. Ezechi, E. H., Kutty, S. R. B. M., Malakahmad, A., & Isa, M. H. (2015). Characterization and optimization of effluent dye removal using a new low cost adsorbent: equilibrium, kinetics and thermodynamic study. Process Safety and Environment Protection, 98, 16–32. https://doi.org/10.1016/j.psep.2015.06.006

    Article  CAS  Google Scholar 

  32. Chowdhury, S., Mishra, R., Saha, P., & Kushwaha, P. (2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265(1-3), 159–168. https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  33. Hameed, B. H., & El-Khaiary, M. I. (2008). Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159(2-3), 574–579. https://doi.org/10.1016/j.jhazmat.2008.02.054

    Article  CAS  PubMed  Google Scholar 

  34. Mittal, H., Parashar, V., Mishra, S. B., & Mishra, A. K. (2014). Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chemical Engineering Journal, 255, 471–482. https://doi.org/10.1016/j.cej.2014.04.098

    Article  CAS  Google Scholar 

  35. Batzias, F. A., & Sidiras, D. K. (2004). Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials, 114(1-3), 167–174. https://doi.org/10.1016/j.jhazmat.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  36. Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. https://doi.org/10.1016/j.jece.2014.07.008

    Article  CAS  Google Scholar 

  37. Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164(1), 53–60. https://doi.org/10.1016/j.jhazmat.2008.07.131

    Article  CAS  PubMed  Google Scholar 

  38. Mitrogiannis, D., Markou, G., Çelekli, A., & Bozkurt, H. (2015). Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Chemical Engineering, 3(2), 670–680. https://doi.org/10.1016/j.jece.2015.02.008

    Article  CAS  Google Scholar 

  39. Kumar, K. V., & Kumaran, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochemical Engineering Journal, 27(1), 83–93. https://doi.org/10.1016/j.bej.2005.08.004

    Article  CAS  Google Scholar 

  40. Wang, W., Tian, G., Zhang, Z., & Wang, A. (2015). A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu(II) ions. Chemical Engineering Journal, 265, 228–238. https://doi.org/10.1016/j.cej.2014.11.135

    Article  CAS  Google Scholar 

  41. Zhang, J., Zhou, Y., Jiang, M., Li, J., & Sheng, J. (2015). Removal of methylene blue from aqueous solution by adsorption on pyrophyllite. Journal of Molecular Liquids, 209, 267–271. https://doi.org/10.1016/j.molliq.2015.05.056

    Article  CAS  Google Scholar 

  42. Li, C., Zhong, H., Wang, S., Xue, J., & Zhang, Z. (2015). Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. Journal of Industrial and Engineering Chemistry, 23, 344–352. https://doi.org/10.1016/j.jiec.2014.08.038

    Article  CAS  Google Scholar 

  43. Hameed, B. H., & Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials, 164(2-3), 870–875. https://doi.org/10.1016/j.jhazmat.2008.08.084

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y., Xie, Y., Zhang, Y., Tang, S., Guo, C., Wu, J., & Lau, R. (2016). Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer. Chemical Engineering Research and Design, 114, 258–267. https://doi.org/10.1016/j.cherd.2016.08.027

    Article  CAS  Google Scholar 

  45. Crini, G., Peindy, H. N., Gimbert, F., & Robert, C. (2007). Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Separation and Purification Technology, 53(1), 97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  46. Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61. https://doi.org/10.1016/j.cej.2014.07.101

    Article  CAS  Google Scholar 

  47. Aksu, Z., & Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40(3-4), 1347–1361. https://doi.org/10.1016/j.procbio.2004.06.007

    Article  CAS  Google Scholar 

  48. Lim, L. B. L., Priyantha, N., Ing, C. H., Dahri, M. K., Tennakoon, D. T. B., Zehra, T., & Suklueng, M. (2015). Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment, 53, 964–975.

    CAS  Google Scholar 

  49. Nasuha, N., Hameed, B. H., & Din, A. T. M. (2010). Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Journal of Hazardous Materials, 175(1-3), 126–132. https://doi.org/10.1016/j.jhazmat.2009.09.138

    Article  CAS  PubMed  Google Scholar 

  50. Banat, F., Al-Asheh, S., & Al-Makhadmeh, L. (2003). Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39(2), 193–202. https://doi.org/10.1016/S0032-9592(03)00065-7

    Article  CAS  Google Scholar 

  51. Liu, J., Li, E., You, X., Hu, C., & Huang, Q. (2017). Erratum: adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment. Scientific Reports, 7, 38450.

    Google Scholar 

  52. Hao, C., Jie, Z., & Dai, G. (2011). Silkworm exuviae—a new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions. Journal of Hazardous Materials, 186, 1320–1327.

    Article  CAS  Google Scholar 

  53. Dotto, G. L., Lima, E. C., & Pinto, L. A. (2012). Biosorption of food dyes onto Spirulina platensis nanoparticles: equilibrium isotherm and thermodynamic analysis. Bioresource Technology, 103(1), 123–130. https://doi.org/10.1016/j.biortech.2011.10.038

    Article  CAS  PubMed  Google Scholar 

  54. Bhatnagar, A., Minocha, A. K., & Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181–186. https://doi.org/10.1016/j.bej.2009.10.005

    Article  CAS  Google Scholar 

  55. Errais, E., Duplay, J., Darragi, F., M'Rabet, I., Aubert, A., Huber, F. and Morvan, G. (2011) Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination, 275, 74-81. https://doi.org/10.1016/j.desal.2011.02.031

Download references

Acknowledgements

This work was supported by Basic Application Program of Department of Science and Technology of Sichuan Province (Grant No. 2015JY0241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkui Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Chen, X., Zeng, X. et al. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies. Appl Biochem Biotechnol 185, 971–985 (2018). https://doi.org/10.1007/s12010-018-2699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2699-1

Keywords

Navigation