Skip to main content
Log in

Selenium Induces Manganese-dependent Peroxidase Production by the White-Rot Fungus Bjerkandera adusta (Willdenow) P. Karsten

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, selenium (Se) induction of the ligninolytic enzyme manganese-dependent peroxidase (MnP) production, and the effects on the oxidative state in the white-rot fungus Bjerkandera adusta (Willdenow) P. Karsten were demonstrated. Low concentration of Se (0.5 mM) caused up to a twofold increase in MnP production (0.81 ± 0.05 U/ml) when compared to control (0.39 ± 0.07 U/ml), whereas higher concentrations of Se (200 mM) inhibited (0.03 ± 0.01 U/ml) MnP production. Addition of high concentration of Se also caused up to a twofold increase in lipid peroxidation levels. These results demonstrate for the first time that Se may induce or reduce MnP production and lipid peroxidation levels which play a significant role in lignin degradation by white-rot fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ag:

Silver

Cd:

Cadmium

Cu:

Copper

Hg:

Mercury

Lac:

laccase

LiP:

lignin peroxidase

MDA:

Malondialdehyde

Mn:

Manganese

MnP:

Manganese-dependent peroxidase

Se:

Selenium

Zn:

Zinc

References

  1. Brigham JS, Adney WS, Himmel ME (1996) Hemicelluloses: diversity and applications. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC, USA, pp 119–142

    Google Scholar 

  2. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotech Adv 22:161–187

    Article  CAS  Google Scholar 

  3. Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Article  CAS  Google Scholar 

  4. Fenice M, Giovannozzi SG, Federici F, D'Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85

    Article  PubMed  CAS  Google Scholar 

  5. Dominguez A, Rivela I, Couto SR, Sanromán MA (2001) Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem 37:549–554

    Article  Google Scholar 

  6. Nakamura Y, Godliving-Sungusia M, Sawada T, Kuwahara M (1999) Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J Biosci Bioeng 88:41–47

    Article  PubMed  CAS  Google Scholar 

  7. Hatakka A (1994) Lignin modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  8. Bermek H, Gülseren İ, Li K, Jung H, Tamerler C (2004) The effect of fungal morphology on ligninolytic enzyme production by a recently isolated wood-degrading fungus Trichophyton rubrum LSK-27. World J Mic Biotech 20:345–349

    Article  CAS  Google Scholar 

  9. Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    PubMed  CAS  Google Scholar 

  10. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  11. Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74

    Article  PubMed  CAS  Google Scholar 

  12. Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450

    PubMed  CAS  Google Scholar 

  13. Munoz AHS, Kubachka K, Wrobel K, Corona JFG, Yathavakilla SKV, Caruso JA, Wrobel K (2006) Se-enriched mycelia of Pleurotus ostreatus: distribution os selenium in cell walls and cell membranes/cytosol. J Agric Food Chem 54:3440–3444

    Article  CAS  Google Scholar 

  14. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144

    Article  PubMed  CAS  Google Scholar 

  15. Ledwozyw A, Michalak J, Stepien A, Kadziolka A (1986) The relationship between plasma tryglicerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clinica Chimica Acta 155:275–284

    Article  CAS  Google Scholar 

  16. Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232

    Article  PubMed  CAS  Google Scholar 

  17. Baldrian P, Valaskova V, Merhautova V, Gabriel J (2005) Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol 156:670–676

    Article  PubMed  CAS  Google Scholar 

  18. Levin L, Forchiassin F, Papinutti L (2002) Effect of copper on the ligninolytic activity of Trametes trogii. Int Biodeterior Biodegrad 49:60

    Google Scholar 

  19. Enoki M, Watanabe T, Nakagame S, Koller K, Messner K, Honda Y, Kuwahara M (1999) Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol Lett 180:205–211

    Article  PubMed  CAS  Google Scholar 

  20. Ginkel VG, Sevian A (1994) Lipid peroxidation-induced membrane structural alterations. Methods Enzymol 233:273–288

    Article  PubMed  Google Scholar 

  21. Hammel KE, Kapich AN, Jensen JKA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enz Microbiol Tech 30:445–453

    Article  CAS  Google Scholar 

  22. Kapich AN, Prior BA, Lundell T, Hatakka A (2005) A rapid method to quantify pro-oxidant activity in cultures of wood-decaying white-rot fungi. J Microbiol Methods 61:261–271

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Turkish State Planning Organization project titled “Advanced Technologies in Engineering”. We would also like to thank Pinar Huner for her valuable help in MnP stability studies. The authors also thank Kelsey Fisher for her help in proof correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunc Catal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catal, T., Liu, H. & Bermek, H. Selenium Induces Manganese-dependent Peroxidase Production by the White-Rot Fungus Bjerkandera adusta (Willdenow) P. Karsten. Biol Trace Elem Res 123, 211–217 (2008). https://doi.org/10.1007/s12011-007-8084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8084-5

Keywords

Navigation