Skip to main content
Log in

Seasonal Changes of Body Iron Status Determine Cadmium Accumulation in the Wild Bank Voles

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to examine relations between body iron (Fe) status and cadmium (Cd) accumulation in a small rodent, the bank vole, caught from the wild population in late autumn (November) and early spring (March). The concentrations of Fe in the liver, kidneys, and duodenum in the bank voles from the spring were only 30%, 60%, and 70%, respectively, of those found in the animals from the autumn. An analysis of hematocrit and hemoglobin content of blood showed no significant effect of the season, suggesting that the animals from the spring were not anemic. The exposure to dietary Cd (10 µg/g) for 7 days resulted in 70% higher accumulation of Cd in the liver and kidneys of the spring than autumn bank voles, and the concentration of Cd in the duodenum was 3.5 times higher in the spring animals, despite the fact that relative Cd intake was significantly higher in the autumn bank voles. The data indicate that seasonal changes of body Fe status occurring in the wild bank voles may influence tissue accumulation of Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83.

    Article  CAS  PubMed  Google Scholar 

  2. Goering PL, Waalkes MP, Klaassen CD (1995) Toxicology of cadmium. In: Goyer RA, Cherian MG (eds) Toxicology of metals: biochemical aspects, vol 115. Springer, New York, pp 189–213.

    Google Scholar 

  3. Andersen O, Nielsen JB, Nordberg GF (2004) Nutritional interactions in intestinal cadmium uptake—possibilities for risk reduction. BioMetals 17:543–547.

    Article  CAS  PubMed  Google Scholar 

  4. Raja KB, Jafri SE, Peters TJ, Simpson RJ (2006) Iron and cadmium uptake by duodenum of hypotransferrinaemic mice. BioMetals 19:547–553.

    Article  CAS  PubMed  Google Scholar 

  5. Groten JP, Sinkeldom EJ, Luten JB, Muys T, van Bladern PJ (1991) Interaction of dietary Ca, P, Mg, Cu, Fe, Zn and Se with the accumulation and oral toxicity of cadmium in rats. Food Chem Toxicol 29:249–258.

    Article  CAS  PubMed  Google Scholar 

  6. Reeves PG, Chaney RL (2004) Marginal nutritional status of zinc, iron and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environ Res 96:311–322.

    Article  CAS  PubMed  Google Scholar 

  7. Włostowski T, Bonda E, Krasowska A (2004) Photoperiod affects hepatic and renal cadmium accumulation, metallothionein induction, and cadmium toxicity in the wild bank vole (Clethrionomys glareolus). Ecotoxicol Environ Saf 58:29–36.

    Article  PubMed  Google Scholar 

  8. Flanagen PR, McLellan JS, Haist J, Cherian MG, Chamberlain MJ, Valberg LS (1978) Increased dietary cadmium absorption in mice and humans subjects with iron deficiency. Gastroenterology 74:841–846.

    Google Scholar 

  9. Schuman K, Friebel P, Schmalke G, Elsenhans B (1996) State of iron repletion and cadmium tissue accumulation as a function of growth in young rats after oral cadmium exposure. Arch Environ Contam Toxicol 31:483–487.

    Article  Google Scholar 

  10. Akesson A, Berglund M, Schutz A, Bjellerup P, Bremme K, Vahter M (2002) Cadmium exposure in pragnancy and lactation in relation to iron status. Am J Publ Health 92:284–287.

    Article  Google Scholar 

  11. Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD (2004) Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 152:19–25.

    Article  CAS  PubMed  Google Scholar 

  12. Min K-S, Iwata N, Tetsuikawahara N, Onosaka S, Tanaka K (2008) Effect of hemolytic and iron-deficiency anemia on intestinal absorption and tissue accumulation of cadmium. Toxicol Lett 179:48–52.

    Article  CAS  PubMed  Google Scholar 

  13. Włostowski T (1987) Heavy metals in the liver of Clethrionomys glareolus (Schreber 1780) and Apodemus agrarius (Pallas 1771) from forests contaminated with coal-industry fumes. Ekol Pol 35:115–129.

    Google Scholar 

  14. Włostowski T. Seasonal changes in subcellular distribution of zinc, copper, cadmium and metallothionein in the liver of bank vole (Clethrionomys glareolus): a possible essential role of cadmium and metallothionein in the hepatic metabolism of copper. Comp Biochem Physiol C. 1992;101:155–162.

    Article  PubMed  Google Scholar 

  15. Włostowski T, Chętnicki W, Gierłachowska-Bałdyga W, Chycak B (1988) Zinc, iron, copper, manganese, calcium and magnesium supply status of free-living bank voles. Acta Theriol 33:555–573.

    Google Scholar 

  16. Gębczyńska Z (1983) Ecology of the bank vole. Feeding habits. Acta Theriol 28 (Suppl 1):40–49.

    Google Scholar 

  17. Włostowski T, Krasowska A, Bonda E (2008) Joint effects of dietary cadmium and polychlorinated biphenyls on metallothionein induction, lipid peroxidation and histopathology in the kidneys and liver of bank voles. Ecotoxicol Environ Saf 69:403–410.

    Article  PubMed  Google Scholar 

  18. Park JD, Cherrington NJ, Klaassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68:288–294.

    Article  CAS  PubMed  Google Scholar 

  19. Kim D-W, Kim K-Y, Choi B-S, Youn P, Ryu D-Y, Klaassen CD, Park J-D (2007) Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch Toxicol 81:327–334.

    Article  CAS  PubMed  Google Scholar 

  20. Tallkvist J, Bowlus CL, Lonnerdal B (2001) DMT1 gene expression and cadmium absorption in human absorptive enterocytes. Toxicol Lett 122:171–177.

    Article  CAS  PubMed  Google Scholar 

  21. Smith MW, Debnam ES, Dashwood MR, Srai SK (2000) Structural and cellular adaptation of duodenal iron uptake in rats maintained on an iron-deficient diet. Pflugers Arch 439:449–454.

    Article  CAS  PubMed  Google Scholar 

  22. Coelho-Palermo Cunha G, van Ravenzweay B, Mellert W, Kaufmann W (2008) Iron deficiency causes duodenum mucosol hyperplasia in male Wistar rats. Toxicol Lett 177:156–167.

    Article  PubMed  Google Scholar 

  23. Hammond KA (1993) Seasonal changes in gut size of the prairie vole (Microtus ochrogaster). Can J Zool 71:820–827.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Włostowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Włostowski, T., Krasowska, A., Salińska, A. et al. Seasonal Changes of Body Iron Status Determine Cadmium Accumulation in the Wild Bank Voles. Biol Trace Elem Res 131, 291–297 (2009). https://doi.org/10.1007/s12011-009-8370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8370-5

Keywords

Navigation