Skip to main content
Log in

Reactive Oxygen Species-Mediated DNA Damage and Apoptosis in Human Skin Epidermal Cells After Exposure to Nickel Nanoparticles

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nickel nanoparticles (NiNPs) are increasingly used in various applications due to their unique properties. However, there is little information concerning the toxicity of NiNPs in the human skin cell (A431). The present study was designed to investigate the cytotoxicity, apoptosis, and DNA damage due to NiNPs in A431 cells. A cellular proliferative capacity test showed that NiNPs induce significant cytotoxicity in a dose- and time-dependent manner. NiNPs were also found to induce oxidative stress evidenced by the generation of reactive oxygen species (ROS) and depletion of glutathione (GSH). Further, co-treatment with the antioxidant N-acetylcysteine (NAC) mitigated the ROS generation due to NiNPs, suggesting the potential mechanism of oxidative stress. NiNPs also induced significant elevation of lipid peroxidation, catalase, and superoxide dismutase and caspase-3 activity in A431 cells. In addition, NAC suppressed NiNP-induced caspase-3 activity. DNA fragmentation analysis using the comet assay showed that the NiNPs cause genotoxicity in a dose- and time-dependent manner. Therefore, the study points out the capability of the NiNPs to induce oxidative stress resulting in apoptosis and genotoxicity. This study warrants more careful assessment of NiNPs before their industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bataille V (2004) Genetic factors in nickel allergy. Journal of Investigative Dermatology 123, xxiv–xxv. doi:10.1111/j.0022-202X.2004.23508.x

  2. Vemula PK, Anderson RR, Karp JM (2011) Nanoparticles reduce nickel allergy by capturing metal ions. Nat Nanotechnol 6:291–295

    Article  CAS  PubMed  Google Scholar 

  3. Zhao J, Wang ZY, Liu XY, Xie XY, Zhang K, Xing B (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197:304–310

    Article  CAS  PubMed  Google Scholar 

  4. Guo D, Wu C, Li X, Jiang H, Wang X, Chen B (2008) In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol 8:2301–2307

    Article  CAS  PubMed  Google Scholar 

  5. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomater 30:3891–3914

    Article  CAS  Google Scholar 

  6. Skocaj M, Filipic M, Petkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45:227–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li Y-F, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980

    Article  CAS  PubMed  Google Scholar 

  8. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:882–890

    Article  CAS  Google Scholar 

  9. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano-level. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Aker WG, Hwang HM, Yedjou CG, Yu H et al (2011) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–4762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2007) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253

    Article  PubMed  Google Scholar 

  12. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol Meth 65:55–63

    Article  Google Scholar 

  13. Wroblewski F, LaDue JS (1955) Lactate dehydrogenase activity in blood. Prop Soc Exp Biol Med 90:210–213

    Article  CAS  Google Scholar 

  14. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  16. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  17. Ellman G (1959) Tissue sulfhydryl groups. Arch. Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  18. Kakkar PS, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  19. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  20. Guan T, Qin F, Du J, Geng L, Zhang Y, Li M (2007) AICAR inhibits proliferation and induced S-phase arrest and promotes apoptosis in CaSki cells. Acta Pharm Sinica 28:1984–1990

    Article  CAS  Google Scholar 

  21. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantization of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  22. Ali D, Ray RS, Hans RK (2010) UVA-induced cyototoxicity and DNA damaging potential of benz (e) acephenanthrylene in human skin cell line. Toxicol Lett 199(2):193–200

    Article  CAS  PubMed  Google Scholar 

  23. Anderson D, Yu TW, Phillips BJ, Schmerzer P (1994) The effect of various antioxidants and other modifying agents on oxygen-radical generated DNA damage inhuman lymphocytes in the comet assay. Mutat Res 307:261–271

    Article  CAS  PubMed  Google Scholar 

  24. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235

    Article  CAS  PubMed  Google Scholar 

  25. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  CAS  PubMed  Google Scholar 

  26. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  27. Rana SV (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22:262–284

    Article  CAS  PubMed  Google Scholar 

  28. Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW (2009) Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-stimulated human lymphocytes. Biochem Biophys Res Commun 386:682–687

    Article  CAS  PubMed  Google Scholar 

  29. Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, BEAS-2B. Toxicol Lett 187:77–83

    Article  CAS  PubMed  Google Scholar 

  30. Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43(16):6349–6356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen M, Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62

    Article  CAS  PubMed  Google Scholar 

  32. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotech 26(3):249–261

    Article  CAS  Google Scholar 

  33. Martinez GR, Loureiro AP, Marques SA, Miyamoto S, Yamaguchi LF, Onuki J et al (2003) Oxidative and alkylating damage in DNA. Mutat Res 544(2–3):115–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the research group project no. RGP-VPP-180.

Conflict of Interest

The authors declare no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoud Ali.

Additional information

Daoud Ali and Saud Alarifi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarifi, S., Ali, D., Alakhtani, S. et al. Reactive Oxygen Species-Mediated DNA Damage and Apoptosis in Human Skin Epidermal Cells After Exposure to Nickel Nanoparticles. Biol Trace Elem Res 157, 84–93 (2014). https://doi.org/10.1007/s12011-013-9871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9871-9

Keywords

Navigation