Skip to main content

Advertisement

Log in

Heavy Metals and Neurodegenerative Diseases: An Observational Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, we evaluated the levels of some of the most investigated metals (Cu, Se, Zn, Pb, and Hg) in the blood of patients affected by the most common chronic neurodegenerative diseases like Alzheimer’s disease (AD) and multiple sclerosis (MS), in order to better clarify their involvement. For the first time, we investigated a Sicilian population living in an area exposed to a potentially contaminated environment from dust and fumes of volcano Etna and consumer of a considerable quantity of fish in their diet, so that this represents a good cohort to demonstrate a possible link between metals levels and development of neurodegenerative disorders. More specifically, 15 patients affected by AD, 41 patients affected by MS, 23 healthy controls, and 10 healthy elderly controls were recruited and subjected to a venous blood sampling. Quantification of heavy metals was performed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This technique has allowed us to establish that there is a concomitance of heavy metal unbalance associated with AD more than in other neurodegenerative pathologies, such as MS. Also, we can assess that the concentration of these elements is independent from the diet, especially from occasional or habitual consumption of fruits and vegetables, prevalence in the diet of meat or fish, possible exposure to contaminated environment due both to the occupation and place of residence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

MS:

Multiple sclerosis

CNS:

Central nervous system

Aβ:

Amyloid beta

ROS:

Reactive oxygen species

APP:

Amyloid precursor protein

Cu/Zn SOD:

Zinc superoxide dismutase enzyme

SePP:

Selenoprotein P

GPx:

Glutathione peroxidase

CSF:

Cerebrospinal fluid

ICP-MS:

Inductively coupled plasma-mass spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantification

RSD%:

Relative standard deviation percentage

References

  1. Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250. doi:10.1093/toxsci/kfr239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Yesavage JA, O’Hara R, Kraemer H, Noda A, Taylor JL, Ferris S, Gely-Nargeot MC, Rosen A, Friedman L, Sheikh J, Derouesne C (2002) Modeling the prevalence and incidence of Alzheimer’s disease and mild cognitive impairment. J Psychiatr Res 36:281–286

    Article  PubMed  Google Scholar 

  3. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    Article  PubMed  CAS  Google Scholar 

  4. Jellinger KA (2006) Alzheimer 100–highlights in the history of Alzheimer research. J Neural Transm 113:1603–1623. doi:10.1007/s00702-006-0578-3

    Article  PubMed  CAS  Google Scholar 

  5. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517. doi:10.1016/S0140-6736(08)61620-7

    Article  PubMed  CAS  Google Scholar 

  6. Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815. doi:10.1093/brain/awm236

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marras C, Goldman SM (2011) Genetics meets environment: Evaluating gene-environment interactions in neurologic diseases. Semin Neurol 31:553–561. doi:10.1055/s-0031-1299793

    Article  PubMed  Google Scholar 

  8. Briner W (2012) The role of metal regulatory proteins in brain oxidative stress: a tutorial. Oxid Med Cell Longev 2012:981561. doi:10.1155/2012/981561

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bowman AB, Kwakye GF, Herrero Hernandez E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203. doi:10.1016/j.jtemb.2011.08.144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lo Turco V, Di Bella G, Furci P, Cicero N, Pollicino G, Dugo G (2013) Heavy metals content by ICP-OES in Sarda sarda, Sardinella aurita and Lepidopus caudatus from the Strait of Messina (Sicily, Italy). Nat Prod Res 27:518–523. doi:10.1080/14786419.2012.673611

    Article  PubMed  CAS  Google Scholar 

  11. Potorti’ AG, Di Bella G, Lo Turco V, Rando R, Dugo G (2013) Non-toxic and potentially toxic elements in Italian donkey milk by ICP-MS and multivariate analysis. J Food Compos Anal 31:161–172

    Article  Google Scholar 

  12. Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270. doi:10.1039/c0mt00074d

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74:270–279

    Article  PubMed  CAS  Google Scholar 

  14. Brewer GJ, Kanzer SH, Zimmerman EA, Celmins DF, Heckman SM, Dick R (2010) Copper and ceruloplasmin abnormalities in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 25:490–497. doi:10.1177/1533317510375083

    Article  PubMed  Google Scholar 

  15. Talmard C, Leuma Yona R, Faller P (2009) Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially alpha-helical conformer to aggregates of amyloid beta protein(1-28). J Biol Inorg Chem 14:449–455. doi:10.1007/s00775-008-0461-9

    Article  PubMed  CAS  Google Scholar 

  16. Craddock TJ, Tuszynski JA, Chopra D, Casey N, Goldstein LE, Hameroff SR, Tanzi RE (2012) The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One 7:e33552. doi:10.1371/journal.pone.0033552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Brewer GJ, Kanzer SH, Zimmerman EA, Molho ES, Celmins DF, Heckman SM, Dick R (2010) Subclinical zinc deficiency in Alzheimer’s disease and Parkinson’s disease. Am J Alzheimers Dis Other Demen 25:572–575. doi:10.1177/1533317510382283

    Article  PubMed  Google Scholar 

  18. Nunez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25:761–776. doi:10.1007/s10534-012-9523-0

    Article  PubMed  CAS  Google Scholar 

  19. Rossi L, Lombardo MF, Ciriolo MR, Rotilio G (2004) Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res 29:493–504

    Article  PubMed  CAS  Google Scholar 

  20. Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555. doi:10.1016/j.neuint.2012.08.014

    Article  PubMed  CAS  Google Scholar 

  21. Ward RJ, Dexter DT, Crichton RR (2012) Chelating agents for neurodegenerative diseases. Curr Med Chem 19:2760–2772

    Article  PubMed  CAS  Google Scholar 

  22. Rossi L, Ciriolo MR, Marchese E, De Martino A, Giorgi M, Rotilio G (1994) Differential decrease of copper content and of copper binding to superoxide dismutase in liver, heart and brain of copper-deficient rats. Biochem Biophys Res Commun 203:1028–1034

    Article  PubMed  CAS  Google Scholar 

  23. Sedighi B, Ebrahimi HA, Haghdoost AA, Abotorabi M (2013) Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group. Iran J Neurol 12:125–128

    PubMed  PubMed Central  Google Scholar 

  24. Wagner S, Breyholz HJ, Faust A, Holtke C, Levkau B, Schober O, Schafers M, Kopka K (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13:2819–2838

    Article  PubMed  CAS  Google Scholar 

  25. Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257:869–881. doi:10.1007/s00415-010-5511-x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Berr C, Balansard B, Arnaud J, Roussel AM, Alperovitch A (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291

    PubMed  CAS  Google Scholar 

  27. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806. doi:10.1089/ars.2007.1528

    Article  PubMed  CAS  Google Scholar 

  28. Smorgon C, Mari E, Atti AR, Dalla Nora E, Zamboni PF, Calzoni F, Passaro A, Fellin R (2004) Trace elements and cognitive impairment: an elderly cohort study. Arch Gerontol Geriatr Suppl 393–402. doi:10.1016/j.archger.2004.04.050

  29. Attar AM, Kharkhaneh A, Etemadifar M, Keyhanian K, Davoudi V, Saadatnia M (2012) Serum mercury level and multiple sclerosis. Biol Trace Elem Res 146:150–153. doi:10.1007/s12011-011-9239-y

    Article  PubMed  CAS  Google Scholar 

  30. Tsai CP, Lee CT (2013) Multiple sclerosis incidence associated with the soil lead and arsenic concentrations in Taiwan. PLoS One 8:e65911. doi:10.1371/journal.pone.0065911

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Myers GJ, Davidson PW, Cox C, Shamlaye CF, Palumbo D, Cernichiari E, Sloane-Reeves J, Wilding GE, Kost J, Huang LS, Clarkson TW (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361:1686–1692. doi:10.1016/S0140-6736(03)13371-5

    Article  PubMed  CAS  Google Scholar 

  32. Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport 12:733–737

    Article  PubMed  CAS  Google Scholar 

  33. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Muller-Spahn F (2002) The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience 113:849–855

    Article  PubMed  CAS  Google Scholar 

  34. Bjorkman L, Lundekvam BF, Laegreid T, Bertelsen BI, Morild I, Lilleng P, Lind B, Palm B, Vahter M (2007) Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health 6:30. doi:10.1186/1476-069X-6-30

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee JY, Kim JH, Choi DW, Lee DW, Park JH, Yoon HJ, Pyo HS, Kwon HJ, Park KS (2012) The association of heavy metal of blood and serum in the Alzheimer’s diseases. Toxicol Res 28:93–98. doi:10.5487/TR.2012.28.2.093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Fung YK, Meade AG, Rack EP, Blotcky AJ, Claassen JP, Beatty MW, Durham T (1995) Determination of blood mercury concentrations in Alzheimer’s patients. Am J Epidemiol 33:243–247

    CAS  Google Scholar 

  37. Aminzadeh KK, Etminan M (2007) Dental amalgam and multiple sclerosis: a systematic review and meta-analysis. J Public Health Dent 67:64–66

    Article  PubMed  Google Scholar 

  38. Khalil N, Morrow LA, Needleman H, Talbott EO, Wilson JW, Cauley JA (2009) Association of cumulative lead and neurocognitive function in an occupational cohort. Neuropsychology 23:10–19. doi:10.1037/a0013757

    Article  PubMed  Google Scholar 

  39. Yun SW, Hoyer S (2000) Effects of low-level lead on glycolytic enzymes and pyruvate dehydrogenase of rat brain in vitro: relevance to sporadic Alzheimer’s disease? J Neural Transm 107:355–368

    Article  PubMed  CAS  Google Scholar 

  40. Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, Feldman HH, Bokde AL, Alexander GE, Scheltens P, Vellas B, Dubois B, Weiner M, Hampel H (2012) Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33:1203–1214. doi:10.1016/j.neurobiolaging.2010.10.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Dr. Massimo Messina belonging to the secretary office of IRCCS Centro Neurolesi “Bonino-Pulejo”-Messina for his excellent technical assistance.

Conflict of Interest

The authors declare no conflicts of interest in relationship to performing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Mazzon.

Additional information

Sabrina Giacoppo and Maria Galuppo contribute equally to this work and share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacoppo, S., Galuppo, M., Calabrò, R.S. et al. Heavy Metals and Neurodegenerative Diseases: An Observational Study. Biol Trace Elem Res 161, 151–160 (2014). https://doi.org/10.1007/s12011-014-0094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0094-5

Keywords

Navigation