Skip to main content

Advertisement

Log in

Cordycepin, 3′-Deoxyadenosine, Prevents Rat Hearts from Ischemia/Reperfusion Injury Via Activation of Akt/GSK-3β/p70S6K Signaling Pathway and HO-1 Expression

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cordycepin (3′-deoxyadenosine) isolated from Cordyceps militaris, a species of the fungal genus Cordyceps, has been shown to exhibit many pharmacological functions, such as anticancer, anti-inflammatory, and antioxidant activities. In this study, we investigated the preventive role of cordycepin in ischemic/reperfusion (I/R) injury of isolated rat hearts and anesthetized rats. After Sprague–Dawley rats received cordycepin (3, 10, and 30 mg/kg) or control (0.5 % carboxyl methylcellulose) orally once a day for a week, hearts were isolated and mounted on Langendorff heart perfusion system. Isolated hearts were perfused with Krebs–Henseleit buffer for 15-min pre-ischemic stabilization period and subjected to 30-min global ischemia and 30-min reperfusion. Cordycepin administration (10 mg/kg, p.o.) significantly increased left ventricular developed pressure during the reperfusion period compared to that in the control group, but without any effect on coronary flow. Cordycepin (10 mg/kg, p.o.) significantly increased the phosphorylation of Akt/GSK-3β/p70S6K pathways, which are known to modulate multiple survival pathways. In addition, cordycepin decreased Bax and cleaved caspase-3 expression while increasing Bcl-2 expression, Bcl-2/Bax ratio, and heme oxygenase (HO-1) expression in isolated rat hearts. In anesthetized rats subjected to 30 min occlusion of left anterior descending coronary artery/2.5-h reperfusion, cordycepin (1, 3, and 10 mg/kg, i.v.) administered 15 min before the onset of ischemia dose-dependently decreased the infarct size in left ventricle. In conclusion, cordycepin could be an attractive therapeutic candidate with oral activity against I/R-associated heart diseases such as myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CF:

Coronary flow

CMC:

Carboxyl methylcellulose

ERK:

Extracellular signal-regulated kinase

LVDL:

Left ventricular developed pressure

LVEDP:

Left ventricular end-diastolic pressure

XTT:

2,3-Bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide

PVDF:

Polyvinylidene fluoride

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Murphy, E., & Steenbergen, C. (2008). Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiological Reviews, 88, 581–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Buja, L. M. (2005). Myocardial ischemia and reperfusion injury. Cardiovascular Pathology, 14, 170–175.

    Article  CAS  PubMed  Google Scholar 

  3. Ambrosio, G., Zweier, J. L., Duilio, C., Kuppusamy, P., Santoro, G., Elia, P. P., et al. (1993). Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. Journal of Biological Chemistry, 268, 18532–18541.

    CAS  PubMed  Google Scholar 

  4. Griendling, K. K., & FitzGerald, G. A. (2003). Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation, 108, 1912–1916.

    Article  PubMed  Google Scholar 

  5. Marczin, N., El-Habashi, N., Hoare, G. S., Bundy, R. E., & Yacoub, M. (2003). Antioxidants in myocardial ischemia–reperfusion injury: Therapeutic potential and basic mechanisms. Archives of Biochemistry and Biophysics, 420, 222–236.

    Article  CAS  PubMed  Google Scholar 

  6. Ryter, S. W., Morse, D., & Choi, A. M. (2007). Carbon monoxide and bilirubin: Potential therapies for pulmonary/vascular injury and disease. American Journal of Respiratory Cell and Molecular Biology, 36, 175–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Abraham, N. G., & Kappas, A. (2008). Pharmacological and clinical aspects of heme oxygenase. Pharmacological Reviews, 60, 79–127.

    Article  CAS  PubMed  Google Scholar 

  8. Cunningham, K. G., Manson, W., Spring, F. S., & Hutchinson, S. A. (1950). Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949.

    Article  CAS  PubMed  Google Scholar 

  9. Feng, X. (2005). Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene, 350, 1–13.

    Article  CAS  PubMed  Google Scholar 

  10. Won, K. J., Lee, S. C., Lee, C. K., Lee, H. M., Lee, S. H., Fang, Z., et al. (2009). Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats. Journal of Pharmacological Sciences, 109, 403–412.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, Z., He, W., Zhou, X., Lv, Q., Xu, X., Yang, S., et al. (2011). Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. European Journal of Pharmacology, 664, 20–28.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, M. K., Lee, S. H., Seo, H. W., Yi, K. Y., Yoo, S. E., Lee, B. H., et al. (2009). KR-31761, a novel K+(ATP)-channel opener, exerts cardioprotective effects by opening both mitochondrial K+(ATP) and Sarcolemmal K+(ATP) channels in rat models of ischemia/reperfusion-induced heart injury. Journal of Pharmacological Sciences, 109, 222–232.

    Article  CAS  PubMed  Google Scholar 

  13. Das, A., Xi, L., & Kukreja, R. C. (2008). Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. Journal of Biological Chemistry, 283, 29572–29585.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kaga, S., Zhan, L., Altaf, E., & Maulik, N. (2006). Glycogen synthase kinase-3beta/beta-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. Journal of Molecular and Cellular Cardiology, 40, 138–147.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, Z., Surichan, S., Ruparelia, K., Arroo, R., & Boarder, M. R. (2011). Tangeretin and its metabolite 4′-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K. British Journal of Pharmacology, 162, 1781–1791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sugden, P. H. (2003). Ras, Akt, and mechanotransduction in the cardiac myocyte. Circulation Research, 93, 1179–1192.

    Article  CAS  PubMed  Google Scholar 

  17. Menon, B., Johnson, J. N., Ross, R. S., Singh, M., & Singh, K. (2007). Glycogen synthase kinase-3beta plays a pro-apoptotic role in beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes: Role of beta1 integrins. Journal of Molecular and Cellular Cardiology, 42, 653–661.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sugden, P. H., Fuller, S. J., Weiss, S. C., & Clerk, A. (2008). Glycogen synthase kinase 3 (GSK3) in the heart: A point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. British Journal of Pharmacology, 153(Suppl 1), S137–S153.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Das, D. K., & Maulik, N. (2004). Conversion of death signal into survival signal by redox signaling. Biochemistry (Mosc), 69, 10–17.

    Article  CAS  Google Scholar 

  20. Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R. A., et al. (2003). Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. American Journal of Physiology Heart and Circulatory Physiology, 285, H579–H588.

    CAS  PubMed  Google Scholar 

  21. Tsang, A., Hausenloy, D. J., Mocanu, M. M., & Yellon, D. M. (2004). Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circulation Research, 95, 230–232.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, X. M., Philipp, S., Downey, J. M., & Cohen, M. V. (2005). Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Research in Cardiology, 100, 57–63.

    Article  CAS  PubMed  Google Scholar 

  23. Miyamoto, S., Murphy, A. N., & Brown, J. H. (2009). Akt mediated mitochondrial protection in the heart: Metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169–180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Das, D. K., & Maulik, N. (2005). Mitochondrial function in cardiomyocytes: Target for cardioprotection. Current Opinion in Anesthesiology, 18, 77–82.

    Article  PubMed  Google Scholar 

  25. Horbinski, C., & Chu, C. T. (2005). Kinase signaling cascades in the mitochondrion: A matter of life or death. Free Radical Biology and Medicine, 38, 2–11.

    Article  CAS  PubMed  Google Scholar 

  26. Juhaszova, M., Zorov, D. B., Kim, S. H., Pepe, S., Fu, Q., Fishbein, K. W., et al. (2004). Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation, 113, 1535–1549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Javadov, S., & Karmazyn, M. (2007). Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cellular Physiology and Biochemistry, 20, 1–22.

    Article  CAS  PubMed  Google Scholar 

  28. Haq, S., Choukroun, G., Kang, Z. B., Ranu, H., Matsui, T., Rosenzweig, A., et al. (2000). Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. Journal of Cell Biology, 151, 117–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Barillas, R., Friehs, I., Cao-Danh, H., Martinez, J. F., & del Nido, P. J. (2007). Inhibition of glycogen synthase kinase-3beta improves tolerance to ischemia in hypertrophied hearts. Annals of Thoracic Surgery, 84, 126–133.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rajak, S., Banerjee, S. K., Sood, S., Dinda, A. K., Gupta, Y. K., Gupta, S. K., et al. (2004). Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic–reperfusion injury in rats. Phytotherapy Research, 18, 54–60.

    Article  CAS  PubMed  Google Scholar 

  31. Cao, J., Drummond, G., Inoue, K., Sodhi, K., Li, X. Y., & Omura, S. (2008). Upregulation of heme oxygenase-1 combined with increased adiponectin lowers blood pressure in diabetic spontaneously hypertensive rats through a reduction in endothelial cell dysfunction, apoptosis and oxidative stress. International Journal of Molecular Sciences, 9, 2388–2406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zweier, J. L., & Talukder, M. A. (2006). The role of oxidants and free radicals in reperfusion injury. Cardiovascular Research, 70, 181–190.

    Article  CAS  PubMed  Google Scholar 

  33. Elmarakby, A. A., Faulkner, J., Posey, S. P., & Sullivan, J. C. (2010). Induction of hemeoxygenase-1 attenuates the hypertension and renal inflammation in spontaneously hypertensive rats. Pharmacological Research, 62, 400–407.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, J. T., Kan, W. H., Hsieh, C. H., Choudhry, M. A., Bland, K. I., & Chaudry, I. H. (2009). Mechanism of salutary effects of estrogen on cardiac function following trauma-hemorrhage: Akt-dependent HO-1 up-regulation. Critical Care Medicine, 37, 2338–2344.

    Article  CAS  PubMed  Google Scholar 

  35. Pachori, A. S., Smith, A., McDonald, P., Zhang, L., Dzau, V. J., & Melo, L. G. (2007). Heme-oxygenase-1-induced protection against hypoxia/reoxygenation is dependent on biliverdin reductase and its interaction with PI3K/Akt pathway. Journal of Molecular and Cellular Cardiology, 43, 580–592.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhou, X., Meyer, C. U., Schmidtke, P., & Zepp, F. (2002). Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology, 453, 309–317.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L. S., Stellrecht, C. M., & Gandhi, V. (2008). RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. British Journal of Haematology, 140, 391–682.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Konkuk University.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Sup Shin.

Additional information

Eun-Seok Park and Do-Hyun Kang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, ES., Kang, DH., Yang, MK. et al. Cordycepin, 3′-Deoxyadenosine, Prevents Rat Hearts from Ischemia/Reperfusion Injury Via Activation of Akt/GSK-3β/p70S6K Signaling Pathway and HO-1 Expression. Cardiovasc Toxicol 14, 1–9 (2014). https://doi.org/10.1007/s12012-013-9232-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9232-0

Keywords

Navigation