Skip to main content

Advertisement

Log in

The Preparation and Performance of a New Polyurethane Vascular Prosthesis

  • Translational Biomedical Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We investigated the performance of small-caliber polyurethane (PU) small-diameter vascular prosthesis generated using the electrospinning technique. PU was electrospun into small-diameter, small-caliber tubular scaffolds for potential application as vascular grafts. We investigated the effects of electrospinning conditions (solution concentration, mandrel rotation speed) on the microstructure and porosity of the scaffolds for the purpose of preparing scaffolds with optimum microstructures and properties. We evaluated the mechanical properties of the scaffolds by tensile tests and the cytotoxicity of the PU small-diameter, small-caliber PU synthetic vascular graft by the MTT assay. The adhesion of endothelial cells to the PU scaffold was characterized by Hoechst staining and fluorescence microscopy, and we measured endothelial cell proliferation on the PU scaffold by the CCK-8 assay. We analyzed the prosthesis microstructure and endothelial cell morphology using scanning electron microscopy. With increasing PU concentration in the electrospinning solution, the fiber diameter of the vascular graft increased and the porosity decreased. In addition, with increasing electrospinning time, the wall thickness increased and the porosity decreased. We found that regular fiber orientation can be obtained by adjusting the rotation speed of the mandrel. Cell proliferation was not inhibited as the small-caliber PU synthetic vascular grafts showed little cytotoxicity. The endothelial cells had faster adherence to the PU scaffolds than to the PTFE surface during the initial contact. After prolonged cell culture, significantly higher endothelial cell proliferation rate was observed in the PU scaffold groups than the PTFE group. We obtained small-caliber PU vascular grafts with optimal fiber arrangement, excellent mechanical properties, and optimal biocompatibility by optimizing the electrospinning conditions. This study provides in vitro biocompatibility data that is helpful for the clinical application of the PU small-diameter, small-caliber PU vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nieponice, A., Soletti, L., Guan, J., Deasy, B. M., Huard, J., Wagner, W. R., et al. (2008). Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials, 29, 825–833.

    Article  PubMed  CAS  Google Scholar 

  2. Ouyang, C.-X., LI, Q., Wang, W.-C., Zhou, F., Xu, W.-L., & Li, W.-B. (2008). Blood compatibility of small-caliber vascular grafts. Journal of Clinical Rehabilitative Tissue Engineering Research, 12(6), 1119–1123.

    CAS  Google Scholar 

  3. Sun, Y.-J., Liu, Y.-G., & Guan, J. (2004). Comparing research of fine structural changes after repairing femoral artery by used three kinds of femorave in grafting methods in dogs. Chinese Journal of Microsurgery, 23(2), 133–134.

    Google Scholar 

  4. Kannan, R. Y., Salacinski, H. J., Butler, P. E., Hamilton, G., & Seifalian, A. M. (2005). Current status of prosthetic bypass grafts: A review. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 74(1), 570–581.

    Article  PubMed  Google Scholar 

  5. Lepidi, S., Grego, F., Vindigni, V., Zavan, B., Tonello, C., Deriu, G. P., et al. (2006). Hyaluronan biodegradable scaffold for small-caliber artery grafting: preliminary results in an animal mode. European Journal of Vascular and Endovascular Surgery, 32(4), 411–447.

    Article  PubMed  CAS  Google Scholar 

  6. Niklason, L. E. (1999). Techview: medical technology. Replacement arteries made to order. Science, 286(5444), 1493–1494.

    Article  PubMed  CAS  Google Scholar 

  7. Cardinal, K. O., Bonnema, G. T., Hofer, H., Barton, J. K., & Williams, S. K. (2006). Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Engineering, 12(12), 3431–3438.

    Article  PubMed  Google Scholar 

  8. Esper, R. J., Nordaby, R. A., Vilarino, J. O., Paragano, A., Cacharron, J. L., & Machado, R. A. (2006). Endothelial dysfunction: A comprehensive appraisal. Cardiovascular Diabetology, 5(1), 4–6.

    Article  PubMed  Google Scholar 

  9. Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472–480.

    Article  PubMed  Google Scholar 

  10. Abbott, W. M., & Vignati, J. J. (1995). Prosthetic grafts: when are they a reasonable alternative? Seminars in Vascular Surgery, 8(3), 236–245.

    PubMed  CAS  Google Scholar 

  11. Herring, M., Gardner, A., & Glover, J. (1978). A single-staged technique for seeding vascular grafts with autologous endothelium. Surgery, 84, 498–504.

    PubMed  CAS  Google Scholar 

  12. Tanake, E. (1995). Healing process of high porous EPTFE graft wrapped in the omental pedicle flap-experimental study of portal vein replacement. Hokkaido Lgaku Zasshi, 70, 697–715.

    Google Scholar 

  13. Isenberg, B. C., Williams, C., & Tranquillo, R. T. (2006). Endothelialization and flow conditioning of fibrin-based media-equivalents. Annals of Biomedical Engineering, 34(6), 971–985.

    Article  PubMed  Google Scholar 

  14. Zhao, H.-S., Cai, H.-B., Pan, Z.-Q., & Gao, Y. (2005). Study on polyurethane biomaterials as macroporous carriers. Journal of Functional Polymers, 18(3), 361–367.

    CAS  Google Scholar 

  15. Sakas, D. E., Charnvises, K., Borges, L. F., & Zervas, N. T. (1990). Biologically inert synthetic dural substitutes. Appraisal of a medical-grade aliphatic polyurethane and a polysiloxane-carbonate block copolymer. Journal of Neurosurgery, 73(6), 936–941.

    Article  PubMed  CAS  Google Scholar 

  16. Grasel, T. G., Pitt, W. G., Murthy, K. D., McCoy, T. J., & Cooper, S. L. (1987). Properties of extruded poly(tetramethylene oxide)–polyurethane block copolymers for blood-contacting applications. Biomaterials, 1987(8), 329–340.

    Article  Google Scholar 

  17. Hu, G.-D. (2002). Haemacompatibility assessment of ployurethanes. Foreign Medical Sciences Biomedical Engineering, 25(6), 271–273.

    Google Scholar 

  18. Gu, H.-Q., & Xu, G.-F. (1993). Biomedical materials science (1st ed.). Tianjin: Tianjin Science & Technology Translation Publishing Corp.

    Google Scholar 

  19. Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Electrostatics, 35(2–3), 151–160.

    Article  CAS  Google Scholar 

  20. Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547.

    Article  CAS  Google Scholar 

  21. Shin, Y. M., Hohman, M. M., Brenner, M. P., & Rutledge, G. C. (2001). Electrospinning: A whipping liquid jet generates submicron polymer fibers. Applied Physics Letters, 78(8), 1149–1151.

    Article  CAS  Google Scholar 

  22. Reneker, D. H., Kataphinan, W., Theron, A., Zussman, E., & Yarin, A. L. (2002). Nanofiber garlands of polycaprolactone by electrospinning. Polymer, 2002(43), 6785–6794.

    Article  Google Scholar 

  23. He, C.-L., Huang, Z.-M., Zhang, Y.-Z., Liu, L., Han, X.-J., & Lu, Y.-N. (2005). Preparation of tissue engineering nano/micro-fibrous scaffolds with electrospinning. Progress in Natural Science, 15(10), 1175–1182.

    Google Scholar 

  24. Bao, Y.-B., Wang, J.-J., & Hu, Q.-L. (2008). Electrospinning of polymers and application studies as tissue engineering scaffolds. Journal of Textile Research, 29(2), 124–128.

    Google Scholar 

  25. Wang, S.-D., Zhang, Y.-Z., Wang, H.-W., Yin, G.-B., Dong, Z.-H., Fu, W.-G., et al. (2009). Structure and properties of electrospun polylactide/silk fibroin-gelatin tubular scaffold. Journal of Textile Research, 30(6), 6–14.

    Google Scholar 

  26. Stitzel, J., Liu, J., Lee, S. J., Komura, M., Berry, J., Soker, S., et al. (2006). Controlled fabrication of a biological vascular substitute. Biomaterials, 27(7), 1088–1094.

    Article  PubMed  CAS  Google Scholar 

  27. Cheng, X.-F., Zou, D.-W., Wu, J.-G., Tuo, X.-L., Wang, X.-G., Liu, J.-L., et al. (2009). Cytotoxicity of 4 novel injectable prosthetic nucleus pulposus in mice fibroblast cells. Acta Academiae Medicinae Militaris Tertiae, 31(5), 412–415.

    CAS  Google Scholar 

  28. Kim, H. M., Kokubo, T., Fujibayashi, S., Nishiquchi, S., & Nakamura, T. (2000). Bioactive macroporous titanium surface layer on titanium substrate. Journal of Biomedical Materials Research, 2000(52), 553–557.

    Article  Google Scholar 

  29. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253.

    Article  CAS  Google Scholar 

  30. He, M.-J., Chen, W.-X., & Dong, X.-X. (1990). Polymer physics (3rd ed.). Shanghai: Fudan University Press.

    Google Scholar 

  31. Xu, C., Yang, F., Wang, S., & Ramakrishna, S. (2004). In vitro study of human vascular endothelial cell function on materials with various surface roughness. Journal of Biomedical Materials Research, 71A(1), 154–161.

    Article  CAS  Google Scholar 

  32. Yang, F., Xu, C.-Y., Kotaki, M., Wang, S., & Ramakrishna, S. (2004). Characterization of neural stem cells on electrospun poly(l-lactic acid) nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 15(12), 1483–1497.

    Article  CAS  Google Scholar 

  33. Zhong, S., Teo, W. E., Zhu, X., Beuerman, R. W., Ramakrishna, S., & Yung, L. Y. (2006). An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. Journal of Biomedical Materials Research Part A, 79(3), 456–463.

    Article  PubMed  Google Scholar 

  34. Choi, J. S., Lee, S. J., Christ, G. J., Atala, A., & Yoo, J. J. (2008). The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials, 29(19), 2899–2906.

    Article  PubMed  CAS  Google Scholar 

  35. How, T. V., Guidoin, R., & Young, S. K. (1992). Engineering design of vascular prosthesis. Proceedings of the Institution of Mechanical Engineers, Part H, 206(2), 61–71.

    Article  CAS  Google Scholar 

  36. Wang, S.-D., Yin, G.-B., Zhang, Y.-Z., Wang, H.-W., Jiang, X.-J., & Dong, Z.-H. (2008). Structure and biomechanical properties of electrospun PLA tubular scaffold. Journal of Materials Engineering, 2008(10), 316–320.

    Google Scholar 

  37. Martz, H., Beaudoin, G., Paynter, R., King, M., Marceau, D., & Guidoin, R. (1987). Physiochemical characterization of hydrophilic microporous polyurethane vascular graft. Journal of Biomedical Materials Research, 21(3), 399–412.

    Article  PubMed  CAS  Google Scholar 

  38. Michael, S. (1998). Polyurethanes in vascular grafts. Rubber World, 218(1), 44–46.

    Google Scholar 

  39. Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone–elastin blends: Potential for bioresorbable vascular grafts. Biomedical Materials, 1(2), 72–80.

    Article  PubMed  CAS  Google Scholar 

  40. Vaz, C. M., Van, T. S., Bouten, C. V., & Baaijens, F. P. (2005). Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomaterial, 1(5), 575–582.

    Article  CAS  Google Scholar 

  41. Pan, S.-R., Yang, S.-F., Yi, W., Zheng, H.-L., & Tao, J. (2005). Effect of preparation conditions for small-diameter artificial polyurethane vascular graft on microstructure and mechanical properties. Chinese J Reparative and Reconstructive Surgery, 19(1), 64–69.

    CAS  Google Scholar 

  42. Stock, U. A., Nagashima, M., Khalil, P. N., Nollert, G. D., Herden, T., Sperling, J. S., et al. (2000). Tissue-engineered valved conduits in the pulmonary circulation. Journal of Thoracic and Cardiovascular Surgery, 119(4), 732–735.

    Article  PubMed  CAS  Google Scholar 

  43. Luo, X.-J., & Wu, Q.-Y. (2001). The development on small-caliber prosthetic graft. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 8(3), 193–196.

    Google Scholar 

  44. Hamaguchi, M., Okuda, Y., & Katami, K. (1994). Short-term thrombogenicity and patency of expanded polytetrafluoroethyline (ePTFE) vascular grafts with varying wall structure. The Japanese Journal of Artificial Organs, 23, 832–837.

    Google Scholar 

  45. Van, M. B., Stegenga, B., Van Leeuwen, M. B., Van Kooten, T. G., & Bos, R. R. (2006). A long-term invitro biocompatibility study of a biodegradable polyurethane and its degradation products. Journal of Biomedical Materials Research Part A, 76(2), 377–385.

    Google Scholar 

  46. You, S.-H., Wang, X., Huang, J.-C., et al. (2003). Biological evaluation of medical devices. Part 5: Test for in vitro cytotoxicity (pp. 84–88). Beijing: China Standard Press.

    Google Scholar 

  47. Conte, M. S. (1998). The ideal small arterial substitute: A search for the Holy Grail? Faseb Journal, 2003(12), 43–45.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National 863 projects of China (2007AA021904), the National Basic Research Program of China (2010CB934700), the Key Induction Project of Science and Technology, Guangdong Province (No: 2011B031300002, 2010B031600055, 2006B35801010, 2005B31201001), the Project-sponsored by SRF for ROCS, SEM (2010-609); and the Doctorate Funding Program for Higher Education, Ministry of Education, China (No: 20050558053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuojun Hu or Anwu Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Hu, Z., Xu, A. et al. The Preparation and Performance of a New Polyurethane Vascular Prosthesis. Cell Biochem Biophys 66, 855–866 (2013). https://doi.org/10.1007/s12013-013-9528-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9528-5

Keywords

Navigation