Skip to main content
Log in

Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis

  • Original Article
  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Human umbilical vein endothelial cells (HUVECs) have played a major role as a model system for the study of the regulation of endothelial cell function and the role of the endothelium in the response of the blood vessel wall to stretch, shear forces, and the development of atherosclerotic plaques and angiogenesis. Here, we use HUVECs and human microvascular endothelial cells to study the role of the HMG-CoA reductase inhibitor, simvastatin, and the small GTP-binding protein Rho in the regulation of angiogenesis. Simvastatin inhibited angiogenesis in response to FGF-2 in the corneal pocket assay of the mouse and in vascular endothelial growth factor (VEGF)-stimulated angiogenesis in the chick chorioallontoic membrane. Furthermore, simvastatin inhibited VEGF-stimulated tube formation by human dermal microvascular endothelial cells and the formation of honeycomb-like structures by HUVECs. The effect was dose-dependent and was not secondary to apoptosis. Geranylgeranyl-pyrophosphate (GGPP), a product of the cholesterol metabolic pathway that serves as a substrate for the posttranslational lipidation of RhoA, was required for membrane localization, but not farnesylpyrophosphate (FPP), the substrate for the lipidation of Ras. Furthermore, GGTI, a specific inhibitor of GGPP, mimicked the effect of simvastatin of tube formation and the formation of honeycombs whereas FTI, a specific inhibitor of the farnesylation of Ras, had no effect. Adenoviral expression of a DN-RhoA mutant mimicked the effect of simvastatin on tube formation and the formation of honeycombs, whereas a dominant activating mutant of RhoA reversed the effect of simvastatin on tube formation. Finally, simvastatin interfered with the membrane localization of RhoA with a dose-dependence similar to that for the inhibition of tube formation. Simvastatin also inhibited the VEGF-stimulated phosphorylation of the VEGF receptor KDR, and the tyrosine kinase FAK, which plays a role in cell migration. These data demonstrate that simvastatin interfered with angiogenesis via the inhibition of RhoA. Data supporting a role for angiogenesis in the development and growth of atherosclerotic plaques suggest that this antiangiogenic effect of Statins might prevent the progression of atherosclerosis via the inhibition of plaque angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamada T, Fan J, Shimokama T, Tokunaga O, Watanabe T. Am J Pathol 1992;241(6):1435–1444.

    Google Scholar 

  2. Bevilacqua MP, Gimbrone MA, Jr. 1987;13(4):425–433.

    Google Scholar 

  3. Libby P. J Intern Med 2000;247(3):349–358.

    Article  PubMed  CAS  Google Scholar 

  4. Davies PF. J Vasc Res 1997;34(3):208–211.

    PubMed  CAS  Google Scholar 

  5. Gimbrone MA, Jr. Prog Hemost Thromb 1976;3:1–28.

    PubMed  Google Scholar 

  6. Goldberger A, Middleton KA, Oliver JA, et al. J Biol Chem 1994; 269(25):17,183–17,191.

    CAS  Google Scholar 

  7. Namiki A, Brogi E, Kearney M, et al. J Biol Chem 1995;270 (52):31,189–31,195.

    CAS  Google Scholar 

  8. Nozawa F, Hirota M, Okabe A, et al. Pancreas 2000;21(4):392–398.

    Article  PubMed  CAS  Google Scholar 

  9. Muscella A, Marsigliante S, Carluccio MA, Vinson GP, Storelli C, et al. J Endocrinol 1997;155(3):587–593.

    Article  PubMed  CAS  Google Scholar 

  10. Burns MP, DePaola N. Am J Physiol Heart Circ Physiol 2005; 288(1):H194-H204.

    Article  PubMed  CAS  Google Scholar 

  11. Kokura S, Wolf RE, Yoshikawa T, Granger DN, Aw TY. Circ Res 1999;84(5):516–524.

    PubMed  CAS  Google Scholar 

  12. Zhang W, DeMattia JA, Song H, Couldwell WT. J Neurosurg 2003;98(4):846–853.

    Article  PubMed  Google Scholar 

  13. Bevilacqua MP, Stengelin S, Gimbrone MA, Jr, Seed B, et al. Science 1989;243(4895):1160–1165.

    Article  PubMed  CAS  Google Scholar 

  14. Parmar KM, Larman HB, Dai G, et al. J Clin Invest 2006; 116(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  15. Parmar KM, Nambudiri V, Dai G, Larman HB, et al. J Biol Chem. 2005;280(29):26,714–26,719.

    Article  CAS  Google Scholar 

  16. Dai G, Kaazempur-Mofrad MR, Natarajan S, et al. Proc Natl Acad Sci USA 2004;101(41):14,871–14,876.

    Article  CAS  Google Scholar 

  17. Kumar S, Li C. Trends Immunol 2001;22(3):129.

    Article  PubMed  CAS  Google Scholar 

  18. Yoon YS, Johnson IA, Park JS, Diaz L, Losordo DW. Mol Cell Biochem 2004;264(1–2):63–74.

    Article  PubMed  CAS  Google Scholar 

  19. Nagata D, Mogi M, Walsh K. J Biol Chem 2003;278(33):31,000–31,006.

    Article  CAS  Google Scholar 

  20. Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB. Circ Res 2002;91(2):143–150.

    Article  PubMed  CAS  Google Scholar 

  21. Weis M, Heeschen C, Glassford AJ, Cooke JP. Circulation 2002;105(6):739–745.

    Article  PubMed  CAS  Google Scholar 

  22. Goldstein JL, Brown MS. Nature 1990;343(6257):425–430.

    Article  PubMed  CAS  Google Scholar 

  23. Grundy SM. Circulation 1998;97(15):1436–1439.

    PubMed  CAS  Google Scholar 

  24. Massy ZA, Keane WF, Kasiske BL. Lancet 1996;347(8994):102–103.

    Article  PubMed  CAS  Google Scholar 

  25. Sacks FM, Moye LA, Davis BR, et al. Circulation 1998;97(15):1446–1452.

    PubMed  CAS  Google Scholar 

  26. Laufs U, La Fata V, Plutzky J, Liao JK. Circulation 1998;97(12):1129–1135.

    PubMed  CAS  Google Scholar 

  27. Lerner EC, Qian Y, Blaskovich MA, et al. J Biol Chem 1995;270(45):26,802–26,806.

    CAS  Google Scholar 

  28. Vogt A, Qian Y, McGuire TF, Hamilton AD, Sebti SM. Oncogene 1996;13(9):1991–1999.

    PubMed  CAS  Google Scholar 

  29. Ernst JD. Cell Microbiol 2000;2(5):379–386.

    Article  PubMed  CAS  Google Scholar 

  30. Gossen M, Bujard H. Proc Natl Acad Sci USA 1992;89(12):5547–5551.

    Article  PubMed  CAS  Google Scholar 

  31. Gingras D, Lamy S, Beliveau R. Biochem J 2000;348(Part 2):273–280.

    Article  PubMed  CAS  Google Scholar 

  32. Clark EA, King WG, Brugge JS, Symons M, Hynes RO. J Cell Biol 1998;142(2):573–586.

    Article  PubMed  CAS  Google Scholar 

  33. Robert P, Tsui P, Laville MP, et al. J Mol Cell Cardiol 2001; 33(9):1589–1606.

    Article  PubMed  CAS  Google Scholar 

  34. Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Circ Res 2002;90(6):737–744.

    Article  PubMed  CAS  Google Scholar 

  35. Feleszko W, Balkowiec EZ, Sieberth E, et al. Int J Cancer 1999;81(4):560–567.

    Article  PubMed  CAS  Google Scholar 

  36. Vincent L, Chen W, Hong L, et al. FEBS Lett 2001;495(3):159–166.

    Article  PubMed  CAS  Google Scholar 

  37. Williams JK, Sukhova GK, Herrington DM, Libby P. J Am Coll Cardiol 1998;31(3):684–691.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson SH, Herrmann J, Lerman LO, et al. Circulation 2002;105(4):415–418.

    Article  PubMed  CAS  Google Scholar 

  39. Gordon B, Chang S, Kavanagh M, et al. Am J Ophthalmol 1991;112(4):385–391.

    PubMed  CAS  Google Scholar 

  40. Folkman J. Nat Med 1995;1(1):27–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas B. Galper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HJ., Zhang, Y., Georgescu, S.P. et al. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev 2, 93–101 (2006). https://doi.org/10.1007/s12015-006-0015-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-006-0015-x

Index Entries

Navigation