Skip to main content

Advertisement

Log in

The Diversity of Spine Synapses in Animals

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

The micrograph in a2 is figure 3B from Gray et al. (2009; Biol. Bull. 217:35–49), reprinted with permission from the Marine Biological Laboratory, Woods Hole, MA (and from Dr. R.A. Satterlie); that in d2 is a reprint of Figure 11 from Holmberg (1970), with permission from Springer Publishing Company (Color figure online)

Fig. 3

The micrograph in a2 is a reprint of Figure 2D from Budelmann and Thies (1977) with permission from Springer Publishing Company (Color figure online)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achatz, J. G., & Martinez, P. (2012). The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers in Zoology, 9, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Acker, C. D., Yan, P., & Loew, L. M. (2011). Single-voxel Recording of voltage transients in dendritic spines. Biophysical Journal, 101(2), L11–L13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acsády, L., Kamondi, A., Sik, A., Freund, T., & Buzsaki, G. (1998). GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. Journal of Neuroscience, 18(9), 3386–3403.

    PubMed  Google Scholar 

  • Akert, K., Pfenning, K., & Sandri, C. (1967a). Fine structure of synapses in subfornical organ of cat. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 81(4), 537–556.

    Article  CAS  PubMed  Google Scholar 

  • Akert, K., Pfenninger, K., & Sandri, C. (1967b). Crest synapses with subjunctional bodies in the subfornical organ. Brain Research, 5(1), 118–120.

    Article  CAS  PubMed  Google Scholar 

  • Alberstein, R., Grey, R., Zimmet, A., Simmons, D. K., & Mayer, M. L. (2015). Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes. Proceedings of the National Academy of Sciences of the United States of America, 112(44), E6048–E6057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertson, D. G., & Thomson, J. N. (1976). Pharynx of caenorhabditis elegans. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 275(938), 299–325.

    Article  CAS  Google Scholar 

  • Altman, J., & Bayer, S. A. (1997). Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC Press.

    Google Scholar 

  • Alvarez-Otero, R., Regueira, S. D., & Anadon, R. (1993). New structural aspects of the synaptic contacts on Purkinje cells in an elasmobranch cerebellum. Journal of Anatomy, 182(Pt 1), 13–21.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, P. A. V., & Grunert, U. (1988). 3-Dimensional structure of bidirectional, excitatory chemical Synapses in the jellyfish Cyanea-Capillata. Synapse, 2(6), 606–613.

    Article  CAS  PubMed  Google Scholar 

  • Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17961–17966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt, D., Tosches, M. A., & Marlow, H. (2016). From nerve net to nerve ring, nerve cord and brain - evolution of the nervous system. Nature Reviews Neuroscience, 17, 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Arluison, M., & de la Manche, I. S. (1980). High-resolution radioautographic study of the serotonin innervation of the rat corpus striatum after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience, 5(2), 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Aronin, N., DiFiglia, M., Liotta, A. S., & Martin, J. B. (1981). Ultrastructural localization and biochemical features of immunoreactive LEU-enkephalin in monkey dorsal horn. Journal of Neuroscience, 1(6), 561–577.

    CAS  PubMed  Google Scholar 

  • Ashby, M. C., Maier, S. R., Nishimune, A., & Henley, J. M. (2006). Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. Journal of Neuroscience, 26(26), 7046–7055.

    Article  CAS  PubMed  Google Scholar 

  • Babb, T. L., Kupfer, W. R., Pretorius, J. K., Crandall, P. H., & Levesque, M. F. (1991). Synaptic reorganization by mossy fibers in Human epileptic Fascia-Dentata. Neuroscience, 42(2), 351–363.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, C. H., Kandel, E. R., & Harris, K. M. (2015). Structural components of synaptic plasticity and memory consolidation. Cold Spring Harbor Perspectives in Biology, 7, a021758. doi:10.1101/cshperspect.a021758.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, C. H., & Thompson, E. B. (1979). Indented synapses in Aplysia. Brain Research, 173(1), 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, C. H., Thompson, E. B., Castellucci, V. F., & Kandel, E. R. (1979). Ultrastructure of the synapses of sensory neurons that mediate the Gill-withdrawal reflex in Aplysia. Journal of Neurocytology, 8(4), 415–444.

    Article  CAS  PubMed  Google Scholar 

  • Baker, C. A., Montey, K. L., Pongstaporn, T., & Ryugo, D. K. (2010). Postnatal development of the endbulb of held in congenitally deaf cats. Front Neuroanatical, 4, 19.

    Google Scholar 

  • Bedini, C., & Lanfranchi, A. (1991). The central and peripheral nervous-system of Acoela (Plathelminthes). An electron-microscopic study. Acta Zoologica, 72(2), 101–106.

    Article  Google Scholar 

  • Bedini, C., & Lanfranchi, A. (1998). Ultrastructural study of the brain of a typhloplanid flatworm. Acta Zoologica, 79(3), 243–249.

    Article  Google Scholar 

  • Bell, C. C., Han, V., & Sawtell, N. B. (2008). Cerebellum-like structures and their implications for cerebellar function. Annual Review of Neuroscience, 31, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Bellot, A., Guivernau, B., Tajes, M., Bosch-Morato, M., Valls-Comamala, V., & Munoz, F. J. (2014). The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines. Brain Research, 1573, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Benarroch, E. E. (2008). Suprachiasmatic nucleus and melatonin reciprocal interactions and clinical correlations. Neurology, 71(8), 594–598.

    Article  PubMed  Google Scholar 

  • Benwitz, G. (1978). Electron-microscopic investigations on development of colloblasts in Ctenophore Pleurobrachia-Pileus (Tentaculifera, Cydippea). Zoomorphologie, 89(3), 257–278.

    Article  Google Scholar 

  • Bergson, C., Mrzljak, L., Smiley, J. F., Pappy, M., Levenson, R., & Goldman-Rakic, P. S. (1995). Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. Journal of Neuroscience, 15(12), 7821–7836.

    CAS  PubMed  Google Scholar 

  • Berson, E. L. (1993). Retinitis-Pigmentosa. The Friedenwald Lecture. Investigative Ophthalmology & Visual Science, 34(5), 1659–1676.

    CAS  Google Scholar 

  • Bery, A., Cardona, A., Martinez, P., & Hartenstein, V. (2010). Structure of the central nervous system of a juvenile acoel. Symsagittifera roscoffensis. Development Genes and Evolution, 220(3–4), 61–76.

    Article  PubMed  Google Scholar 

  • Bischofberger, J., Engel, D., Frotscher, M., & Jonas, P. (2006). Timing and efficacy of transmitter release at mossy fiber synapses in the hippocampal network. Pflugers Archiv-European Journal of Physiology, 453(3), 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Blanks, J. C., Adinolfi, A. M., & Lolley, R. N. (1974). Synaptogenesis in the photoreceptor terminal of the mouse retina. Journal of Comparative Neurology, 156(1), 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Bloodgood, B. L., Giessel, A. J., & Sabatini, B. L. (2009). Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biology, 7(9), e1000190. doi:10.1371/journal.pbio.1000190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst, A., & Helmstaedter, M. (2015). Common circuit design in fly and mammalian motion vision. Nature Neuroscience, 18(8), 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  • Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., & Hayashi, Y. (2014). Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron, 82(2), 444–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boschek, C. B. (1971). Fine structure of peripheral retina and Lamina Ganglionaris of fly, Musca-Domestica. zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 118(3), 369–409.

    Article  CAS  PubMed  Google Scholar 

  • Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience, 31, 47–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boycott, B. B., Guillery, R. W., & Gray, E. G. (1961). Synaptic structure and its alteration with environmental temperature: A study by light and electron microscopy of central nervous system of lizards. Proceedings of the Royal Society Series B-Biological Sciences, 154(955), 151+.

    Article  Google Scholar 

  • Brandon, J. G., & Coss, R. G. (1982). Rapid dendritic spine stem shortening during one-trial learning: the honeybee’s first orientation flight. Brain Research, 252(1), 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Brown, S., & Wolff, G. (2012). Fine structural organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus. Journal of Comparative Neurology, 520(13), 2847–2863.

    Article  PubMed  Google Scholar 

  • Budelmann, B. U., Sachse, M., & Staudigl, M. (1987). The angular-acceleration receptor system of the statocyst of Octopus-Vulgaris: Morphometry, ultrastructure, and neuronal and synaptic organization. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 315(1174), 305–343.

    Article  Google Scholar 

  • Budelmann, B. U., & Thies, G. (1977). Secondary sensory cells in gravity receptor system of statocyst of Octopus-Vulgaris. Cell and Tissue Research, 182(1), 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Burighel, P., Lane, N. J., Fabio, G., Stefano, T., Zaniolo, G., Carnevali, M. D., & Manni, L. (2003). Novel, secondary sensory cell organ in ascidians: in search of the ancestor of the vertebrate lateral line. Journal of Comparative Neurology, 461(2), 236–249.

    Article  PubMed  Google Scholar 

  • Buttarelli, F. R., Pellicano, C., & Pontieri, F. E. (2008). Neuropharmacology and behavior in planarians: Translations to mammals. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 147(4), 399–408.

    Article  CAS  Google Scholar 

  • Byzov, A. L., & Shura-Bura, T. M. (1986). Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina. Vision Research, 26(1), 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Campellone, K. G., & Leong, J. M. (2003). Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Current Opinion in Microbiology, 6(1), 82–90.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, J. T., Vellutini, B. C., Smith, J, 3rd, Ronquist, F., Jondelius, U., & Hejnol, A. (2016). Xenacoelomorpha is the sister group to Nephrozoa. Nature, 530(7588), 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Cano, J., Pasik, P., & Pasik, T. (1989). Early postnatal development of the monkey globus pallidus: A golgi and electron microscopic study. Journal of Comparative Neurology, 279(3), 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Carr, D. B., & Sesack, S. R. (1996). Hippocampal afferents to the rat prefrontal cortex: Synaptic targets and relation to dopamine terminals. Journal of Comparative Neurology, 369(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Case, N. M., Young, J. Z., & Gray, E. G. (1972). Ultrastructure and synaptic relations in optic lobe of brain of Eledone and Octopus. Journal of Ultrastructure Research, 39(1–2), 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Castejón, O. J., & Apkarian, R. P. (1993). Conventional and high resolution field emission scanning electron microscopy of vertebrate cerebellar parallel fiber-Purkinje spine synapses. Cellular Molecular Biology (Noisy-le-grand), 39(8), 863–873.

    Google Scholar 

  • Castejón, O. J., & Villegas, G. M. (1964). Fine structure of synaptic contacts in stellate ganglion of squid. Journal of Ultrastructure Research, 10(5–6), 585–598.

    Article  PubMed  Google Scholar 

  • Cerminara, N. L., Lang, E. J., Sillitoe, R. V., & Apps, R. (2015). Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nature Reviews Neuroscience, 16(2), 79–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chazeau, A., & Giannone, G. (2016). Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cellular and Molecular Life Science,. doi:10.1007/s00018-00016-02214-00011.

    Google Scholar 

  • Chen, X., Levy, J. M., Hou, A., Winters, C., Azzam, R., Sousa, A. A., et al. (2015). PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proceedings of National Academy of Science USA, 112(50), E6983–E6992. doi:10.1073/pnas.1517045112.

    Article  CAS  Google Scholar 

  • Chen, W. R., Xiong, W. H., & Shepherd, G. M. (2000). Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron, 25(3), 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Chevy, Q., Heubl, M., Goutierre, M., Backer, S., Moutkine, I., Eugene, E., et al. (2015). KCC2 Gates Activity-Driven AMPA Receptor Traffic through Cofilin Phosphorylation. Journal of Neuroscience, 35(48), 15772–15786.

    Article  CAS  PubMed  Google Scholar 

  • Chicurel, M. E., & Harris, K. M. (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. Journal of Comparative Neurology, 325(2), 169–182.

    Article  CAS  PubMed  Google Scholar 

  • Chiu, C. Q., Lur, G., Morse, T. M., Carnevale, N. T., Ellis-Davies, G. C., & Higley, M. J. (2013). Compartmentalization of GABAergic inhibition by dendritic spines. Science, 340(6133), 759–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: Viewpoint two sides of the same coin. Neuron, 43(5), 609–617.

    CAS  PubMed  Google Scholar 

  • Chu, D. T. W., & Klymkowsky, M. W. (1989). The appearance of acetylated alpha-tubulin during early development and cellular-differentiation in Xenopus. Developmental Biology, 136(1), 104–117.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, D. J., & Dunnett, S. B. (1986). Ultrastructural organization of choline-acetyltransferase-immunoreactive fibres innervating the neocortex from embryonic ventral forebrain grafts. Journal of Comparative Neurology, 250(2), 192–205.

    Article  CAS  PubMed  Google Scholar 

  • Clément, P. (1977). Ultrastructural research on rotifers. Archive Hydrobiol Beib Ergebn Limnol, 8, 270–297.

    Google Scholar 

  • Coates, M. M. (2003). Visual ecology and functional morphology of cubozoa (cnidaria). Integrative and Comparative Biology, 43(4), 542–548.

    Article  PubMed  Google Scholar 

  • Cobb, J. L. S., & Stubbs, T. R. (1982). The giant-neuron system in Ophiuroids. 3. The detailed connections of the circum-oral nerve ring. Cell and Tissue Research, 226(3), 675–687.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, A. I. (1973). Ultrastructural analysis of photoreceptors of squid and their synaptic connections. 3. Photoreceptor terminations in optic lobes. Journal of Comparative Neurology, 147(3), 399–425.

    Article  CAS  PubMed  Google Scholar 

  • Colmers, W. F. (1977). Neuronal and synaptic organization in gravity receptor system of statocyst of Octopus-Vulgaris. Cell and Tissue Research, 185(4), 491–503.

    Article  CAS  PubMed  Google Scholar 

  • Colonnier, M., & Guillery, R. W. (1964). Synaptic organization in the lateral geniculate nucleus of the monkey. Z Zellforsch Mikrosk Anat, 62, 333–355.

    Article  CAS  PubMed  Google Scholar 

  • Cooney, J. R., Hurlburt, J. L., Selig, D. K., Harris, K. M., & Fiala, J. C. (2002). Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. Journal of Neuroscience, 22(6), 2215–2224.

    CAS  PubMed  Google Scholar 

  • Coss, R. G., Brandon, J. G., & Globus, A. (1980). Changes in morphology of dendritic spines on honeybee calycal interneurons associated with cumulative nursing and foraging experiences. Brain Research, 192(1), 49–59.

    Article  CAS  PubMed  Google Scholar 

  • Coss, R. G., & Perkel, D. H. (1985). The function of dendritic spines: A review of theoretical issues. Behavioral and Neural Biology, 44(2), 151–185.

    Article  CAS  PubMed  Google Scholar 

  • Dacheux, R. F., & Raviola, E. (1982). Horizontal cells in the retina of the rabbit. Journal of Neuroscience, 2(10), 1486–1493.

    CAS  PubMed  Google Scholar 

  • Darstein, M., Petralia, R. S., Swanson, G. T., Wenthold, R. J., & Heinemann, S. F. (2003). Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. Journal of Neuroscience, 23(22), 8013–8019.

    CAS  PubMed  Google Scholar 

  • De Robertis, E. D. P., & Bennett, H. S. (1955). Some features of the submicroscopic morphology of synapses in frog and earthworm. Journal of Biophysical and Biochemical Cytology,1(1)47–58 + 43 plates.

  • De Stefano, M. E., Luzzatto, A. C., & Mugnaini, E. (1993). Neuronal ultrastructure and somatostatin immunolocalization in the ciliary ganglion of chicken and quail. Journal of Neurocytology, 22(10), 868–892.

    Article  PubMed  Google Scholar 

  • De Zeeuw, C. I., Gerrits, N. M., Voogd, J., Leonard, C. S., & Simpson, J. I. (1994). The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. Journal of Comparative Neurology, 341(3), 420–432.

    Article  PubMed  Google Scholar 

  • Dehay, C., Douglas, R. J., Martin, K. A., & Nelson, C. (1991). Excitation by geniculocortical synapses is not ‘vetoed’ at the level of dendritic spines in cat visual cortex. Journal of Physiology, 440, 723–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deller, T., Merten, T., Roth, S. U., Mundel, P., & Frotscher, M. (2000). Actin-associated protein synaptopodin in the rat hippocampal formation: Localization in the spine neck and close association with the spine apparatus of principal neurons. Journal of Comparative Neurology, 418(2), 164–181.

    Article  CAS  PubMed  Google Scholar 

  • Deller, T., Orth, C. B., Del Turco, D., Vlachos, A., Burbach, G. J., Drakew, A., et al. (2007). A role for synaptopodin and the spine apparatus in hippocampal synaptic plasticity. Annals of Anatomy-Anatomischer Anzeiger, 189(1), 5–16.

    Article  CAS  Google Scholar 

  • Dent, E. W., Merriam, E. B., & Hu, X. (2011). The dynamic cytoskeleton: backbone of dendritic spine plasticity. Current Opinion in Neurobiology, 21(1), 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Descarries, L., Berube-Carriere, N., Riad, M., Bo, G. D., Mendez, J. A., & Trudeau, L. E. (2008). Glutamate in dopamine neurons: Synaptic versus diffuse transmission. Brain Research Reviews, 58(2), 290–302.

    Article  CAS  PubMed  Google Scholar 

  • Descarries, L., Watkins, K. C., Garcia, S., & Beaudet, A. (1982). The serotonin neurons in nucleus raphe dorsalis of adult rat: A light and electron microscope radioautographic study. Journal of Comparative Neurology, 207(3), 239–254.

    Article  CAS  PubMed  Google Scholar 

  • DeVries, S. H., Li, W., & Saszik, S. (2006). Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse. Neuron, 50(5), 735–748.

    Article  CAS  PubMed  Google Scholar 

  • DiGregorio, D. A., Nusser, Z., & Silver, R. A. (2002). Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron, 35(3), 521–533.

    Article  CAS  PubMed  Google Scholar 

  • Dilly, P. N. (1969). Synapses in Cerebral Ganglion of Adult Ciona Intestinalis. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 93(1), 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Dilly, P. N. (1972). Structures of Tentacles of “Rhabdopleura-Compacta(Hemichordata) with special reference to neurociliary control. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 129(1), 20–39.

    Article  CAS  PubMed  Google Scholar 

  • Dilly, P. N., Gray, E. G., & Young, J. Z. (1963). Electron microscopy of optic nerves and optic lobes of octopus and Eledone. Proceedings of the Royal Society Series B-Biological Sciences, 158(973), 446+.

    Article  CAS  Google Scholar 

  • Dilly, P. N., Welsch, U., & Storch, V. (1970). Structure of nerve fibre layer and neurocord in enteropneusts. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 103(1), 129–148.

    Article  CAS  PubMed  Google Scholar 

  • Dryer, L., & Graziadei, P. P. C. (1996). Synaptology of the olfactory bulb of an elasmobranch fish Sphyrna tiburo. Anatomy and Embryology, 193(2), 101–114.

    Article  CAS  PubMed  Google Scholar 

  • Dubin, M. W. (1970). The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. Journal of Comparative Neurology, 140(4), 479–505.

    Article  CAS  PubMed  Google Scholar 

  • Duman, C. H., & Duman, R. S. (2015). Spine synapse remodeling in the pathophysiology and treatment of depression. Neuroscience Letters, 601, 20–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid, T., Kovacs, I., Spencer, D. D., & de Lanerolle, N. C. (2002). Novel expression of AMPA-receptor subunit GluR1 on mossy cells and CA3 pyramidal neurons in the human epileptogenic hippocampus. European Journal of Neuroscience, 15(3), 517–527.

    Article  PubMed  Google Scholar 

  • Ellwanger, K., Eich, A., & Nickel, M. (2007). GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 193(1), 1–11.

    Article  CAS  Google Scholar 

  • Ellwanger, K., & Nickel, M. (2006). Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera). Frontiers in Zoology, 3, 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emes, R. D., & Grant, S. G. (2012). Evolution of synapse complexity and diversity. Annual Review of Neuroscience, 35, 111–131.

    Article  CAS  PubMed  Google Scholar 

  • Fahrenbach, W. H. (1979). Brain of the Horseshoe Crab (Limulus-Polyphemus).3. Cellular and synaptic organization of the Corpora Pedunculata. Tissue and Cell, 11(1), 163–200.

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti, E. V., & Peters, A. (1972). Synaptic glomerulus and intrinsic neuron in dorsal lateral geniculate nucleus of cat. Journal of Comparative Neurology, 144(3), 285–334.

    Article  PubMed  Google Scholar 

  • Farris, S. M., Robinson, G. E., & Fahrbach, S. E. (2001). Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. Journal of Neuroscience, 21(16), 6395–6404.

    CAS  PubMed  Google Scholar 

  • Ferrero, E. (1973). Fine-structural analysis of statocyst in Turbellaria Acoela. Zoologica Scripta, 2(1), 5–16.

    Article  Google Scholar 

  • Fischbach, K. F., & Dittrich, A. P. M. (1989). The optic lobe of Drosophila-Melanogaster. 1. A golgi analysis of wild-Type structure. Cell and Tissue Research, 258(3), 441–475.

    Article  Google Scholar 

  • Fischer, F. P. (1992). Quantitative analysis of the innervation of the chicken basilar papilla. Hearing Research, 61(1–2), 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Fishelson, L. (1981). Observations on the moving colonies of the genus Tethya (Demospongia, Porifera).1. Behavior and cytology. Zoomorphology, 98(1), 89–99.

    Article  Google Scholar 

  • Fisher, S. K., & Boycott, B. B. (1974). Synaptic connections made by horizontal cells within outer plexiform layer of retina of cat and rabbit. Proceedings of the Royal Society Series B-Biological Sciences, 186(1085), 317.

    Article  CAS  Google Scholar 

  • Flood, P. R. (1966). A peculiar mode of muscular innervation in Amphioxus. Light and electron microscopic studies of the so-called ventral roots. Journal of Comparative Neurology, 126(2), 181–217.

    Article  CAS  PubMed  Google Scholar 

  • Frambach, I., Rossler, W., Winkler, M., & Schurmann, F. W. (2004). F-actin at identified synapses in the mushroom body neuropil of the insect brain. Journal of Comparative Neurology, 475(3), 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Franc, J. M. (1978). Organization and function of ctenophore colloblasts: Ultrastructural-study. Biological Bulletin, 155(3), 527–541.

    Article  Google Scholar 

  • Freund, T. F., Powell, J. F., & Smith, A. D. (1984). Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience, 13(4), 1189–1215.

    Article  CAS  PubMed  Google Scholar 

  • Frotscher, M., Seress, L., Schwerdtfeger, W. K., & Buhl, E. (1991). The mossy cells of the fascia-dentata: A comparative-study of their fine-structure and synaptic connections in rodents and primates. Journal of Comparative Neurology, 312(1), 145–163.

    Article  CAS  PubMed  Google Scholar 

  • Frotscher, M., Studer, D., Graber, W., Chai, X., Nestel, S., & Zhao, S. (2014). Fine structure of synapses on dendritic spines. Frontiers in Neuroanatomy, 8, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs, P. A. (2014). A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells. Journal of Physiology, 592(Pt 16), 3393–3401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004a). Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience, 125(3), 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004b). Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. Journal of Comparative Neurology, 468(1), 86–95.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, C. L., Jones, J. R., Baer, S. M., & Crook, S. M. (2015). Drift-diffusion simulation of the ephaptic effect in the triad synapse of the retina. Journal of Computational Neuroscience, 38(1), 129–142.

    Article  PubMed  Google Scholar 

  • Garm, A., & Nilsson, D. E. (2014). Visual navigation in starfish: First evidence for the use of vision and eyes in starfish. Proceedings of the Royal Society B-Biological Sciences, 281(1777), 20133011. doi:10.1098/rspb.2013.3011.

    Article  PubMed Central  Google Scholar 

  • Geiger, J. R., Lubke, J., Roth, A., Frotscher, M., & Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18(6), 1009–1023.

    Article  CAS  PubMed  Google Scholar 

  • Geiger, J. R., Melcher, T., Koh, D. S., Sakmann, B., Seeburg, P. H., Jonas, P., & Monyer, H. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15(1), 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P. S., Leranth, C., Williams, S. M., Mons, N., & Geffard, M. (1989). Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proceedings of National Academy of Science USA, 86(22), 9015–9019.

    Article  CAS  Google Scholar 

  • Goosney, D. L., de Grado, M., & Finlay, B. B. (1999). Putting E. coli on a pedestal: a unique system to study signal transduction and the actin cytoskeleton. Trends in Cell Biology, 9(1), 11–14.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, D. P. (1974). Microarchitecture and function of lophophore in bryozoan Cryptosula-Pallasiana. Marine Biology, 27(2), 147–163.

    Google Scholar 

  • Goto, J., & Mikoshiba, K. (2011). Inositol 1,4,5-trisphosphate receptor-mediated calcium release in Purkinje cells: from molecular mechanism to behavior. Cerebellum, 10(4), 820–833.

    Article  CAS  PubMed  Google Scholar 

  • Granger, A. J., Mulder, N., Saunders, A., & Sabatini, B. L. (2016). Cotransmission of acetylcholine and GABA. Neuropharmacology, 100, 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Gray, E. G. (1959). Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study. Journal of Anatomy, 93, 420–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, E. G. (1961). The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: Light and electron microscope observations. Journal of Anatomy, 95, 345–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, E. G., & Guillery, R. W. (1963). A note on the dendritic spine apparatus. Journal of Anatomy, 97, 389–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, G. C., Martin, V. J., & Satterlie, R. A. (2009). Ultrastructure of the retinal synapses in cubozoans. Biological Bulletin, 217(1), 35–49.

    Article  PubMed  Google Scholar 

  • Gregory-Evans, K., Fariss, R. N., Possin, D. E., Gregory-Evans, C. Y., & Milam, A. H. (1998). Abnormal cone synapses in human cone-rod dystrophy. Ophthalmology, 105(12), 2306–2312.

    Article  CAS  PubMed  Google Scholar 

  • Grigoryan, G., & Segal, M. (2016). Ryanodine-mediated conversion of STP to LTP is lacking in synaptopodin-deficient mice. Brain Structure and Function, 221(4), 2393–2397.

    Article  CAS  PubMed  Google Scholar 

  • Groves, P. M., Linder, J. C., & Young, S. J. (1994). 5-hydroxydopamine-labeled dopaminergic axons: Three-dimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum. Neuroscience, 58(3), 593–604.

    Article  CAS  PubMed  Google Scholar 

  • Grunditz, A., Holbro, N., Tian, L., Zuo, Y., & Oertner, T. G. (2008). Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. Journal of Neuroscience, 28(50), 13457–13466.

    Article  CAS  PubMed  Google Scholar 

  • Güldner, F. H. (1976). Synaptology of Rat Suprachiasmatic Nucleus. Cell and Tissue Research, 165(4), 509–544.

    Article  PubMed  Google Scholar 

  • Gulledge, A. T., Carnevale, N. T., & Stuart, G. J. (2012). Electrical advantages of dendritic spines. PLoS One, 7(4), e36007. doi:10.1371/journal.pone.0036007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyas, A. I., Miettinen, R., Jacobowitz, D. M., & Freund, T. F. (1992). Calretinin is present in nonpyramidal cells of the rat hippocampus. 1. A new type of neuron specifically associated with the mossy fiber system. Neuroscience, 48(1), 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Günther, J., & Schürmann, F. W. (1973). Zur Feinstruktur des dorsalen riesenfasersystems im bauchmark des regenwurms. II. Synaptische beziehungen der proximalen riesenfaserkollateralen. Z Zellforsch, 139, 369–396.

    Article  PubMed  Google Scholar 

  • Haas, M. A., Bell, D., Slender, A., Lana-Elola, E., Watson-Scales, S., Fisher, E. M. C., et al. (2013). Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of down syndrome. PLoS One, 8(10), e78561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner, G. S. (1974). The ultrastructure of retinula cell endings in the compound eye of the crayfish. Journal of Neurocytology, 3(3), 295–311.

    Article  CAS  PubMed  Google Scholar 

  • Hall, D. H., & Russell, R. L. (1991). The posterior nervous-system of the nematode Caenorhabditis-Elegans: Serial reconstruction of identified neurons and complete pattern of synaptic-interactions. Journal of Neuroscience, 11(1), 1–22.

    CAS  PubMed  Google Scholar 

  • Halpain, S. (2000). Actin and the agile spine: how and why do dendritic spines dance? Trends in Neurosciences, 23(4), 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Halton, D. W., & Gustafsson, M. K. S. (1996). Functional morphology of the platyhelminth nervous system. Parasitology, 113, S47–S72.

    Article  Google Scholar 

  • Hama, K. (1961). Some observations on fine structure of giant fibers of crayfishes (Cambarus Virilus and Cambarus Clarkii) with special reference to submicroscopic organization of synapses. Anatomical Record, 141(4), 275–293.

    Article  CAS  PubMed  Google Scholar 

  • Hama, K. (1962). Some Observations on the fine structure of the giant synapse in the stellate ganglion of the squid, Doryteuphis-Bleekeri. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 56(4), 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Hamill, G. S., & Lenn, N. J. (1983). Synaptic plasticity within the interpeduncular nucleus after unilateral lesions of the habenula in neonatal rats. Journal of Neuroscience, 3(11), 2128–2145.

    CAS  PubMed  Google Scholar 

  • Hamilton, D. W. (1968). The calyceal synapse of type I vestibular hair cells. Journal of Ultrastructure Research, 23(1), 98–114.

    Article  CAS  PubMed  Google Scholar 

  • Hamlyn, L. H. (1962). Fine Structure of Mossy Fibre Endings in Hippocampus of Rabbit. Journal of Anatomy, 96(Jan), 112–120 + 116 plates.

  • Hamori, J., & Horridge, G. A. (1966). Lobster optic lamina. 2. Types of synapse. Journal of Cell Science, 1(2), 257–270.

    Google Scholar 

  • Hamori, J., Pasik, T., Pasik, P., & Szentagothai, J. (1974). Triadic synaptic arrangements and their possible significance in the lateral geniculate nucleus of the monkey. Brain Research, 80(3), 379–393.

    Article  CAS  PubMed  Google Scholar 

  • Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L., & Magee, J. C. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 491(7425), 599+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, K. M., Jensen, F. E., & Tsao, B. (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. Journal of Neuroscience, 12(7), 2685–2705.

    CAS  PubMed  Google Scholar 

  • Harris, K. M., & Kater, S. B. (1994). Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annual Review of Neuroscience, 17, 341–371.

    Article  CAS  PubMed  Google Scholar 

  • Harris, K. M., & Weinberg, R. J. (2012). Ultrastructure of synapses in the mammalian brain. Cold Spring Harbor Perspectives in Biology, 4(5), a005587. doi:10.1101/cshperspect.a005587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartline, D. K., & Colman, D. R. (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Current Biology, 17(1), R29–R35.

    Article  CAS  PubMed  Google Scholar 

  • Hausen, K., Wolburgbuchholz, K., & Ribi, W. A. (1980). The synaptic organization of visual interneurons in the lobula complex of flies: A light and electron microscopical study using silver-intensified Cobalt-Impregnations. Cell and Tissue Research, 208(3), 371–387.

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp, S., Grunert, U., & Wassle, H. (2000). The cone pedicle, a complex synapse in the retina. Neuron, 27(1), 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Heimberg, A. M., Cowper-Sallari, R., Semon, M., Donoghue, P. C. J., & Peterson, K. J. (2010). microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19379–19383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henselmans, J. M. L., & Wouterlood, F. G. (1994). Light and electron-microscopic characterization of cholinergic and dopaminergic structures in the striatal complex and the dorsal ventricular ridge of the lizard Gekko-Gecko. Journal of Comparative Neurology, 345(1), 69–83.

    Article  CAS  PubMed  Google Scholar 

  • Henze, D. A., Urban, N. N., & Barrionuevo, G. (2000). The multifarious hippocampal mossy fiber pathway: A review. Neuroscience, 98(3), 407–427.

    Article  CAS  PubMed  Google Scholar 

  • Henze, D. A., Wittner, L., & Buzsaki, G. (2002). Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nature Neuroscience, 5(8), 790–795.

    CAS  PubMed  Google Scholar 

  • Hering, H., & Sheng, M. (2001). Dendritic spines: Structure, dynamics and regulation. Nature Reviews Neuroscience, 2(12), 880–888.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Nicaise, M. L. (1973). The nervous system of ctenophores. III. Ultrastructure of synapses. Journal of Neurocytology, 2(3), 249–263.

    Article  CAS  PubMed  Google Scholar 

  • Hersch, S. M., Ciliax, B. J., Gutekunst, C. A., Rees, H. D., Heilman, C. J., Yung, K. K., et al. (1995). Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. Journal of Neuroscience, 15(7 Pt 2), 5222–5237.

    CAS  PubMed  Google Scholar 

  • Hirokawa, N. (1978). The ultrastructure of the basilar papilla of the chick. Journal of Comparative Neurology, 181(2), 361–374.

    Article  CAS  PubMed  Google Scholar 

  • Hnasko, T. S., & Edwards, R. H. (2012). Neurotransmitter corelease: Mechanism and physiological role. Annual Review of Physiology, 74, 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg, K. (1970). Hagfish retina: Fine structure of retinal cells in Myxine-Glutinosa, L, with special reference to receptor and epithelial cells. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 111(4), 519–538.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg, K. (1971). Hagfish retina: Electron microscopic study comparing receptor and epithelial cells in Pacific Hagfish, Polistotrema-Stouti, with those in Atlantic Hagfish, Myxine-Glutinosa. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 121(2), 249–269.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg, K., & Ohman, P. (1976). Fine-structure of retinal synaptic organelles in lamprey and hagfish photoreceptors. Vision Research, 16(3), 237–239.

    Article  CAS  PubMed  Google Scholar 

  • Holtmann, M., & Thurm, U. (2001). Mono- and oligo-vesicular synapses and their connectivity in a Cnidarian sensory epithelium (Coryne tubulosa). Journal of Comparative Neurology, 432(4), 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Hoogenraad, C. C., & Akhmanova, A. (2010). Dendritic spine plasticity: New regulatory roles of dynamic microtubules. Neuroscientist, 16(6), 650–661.

    Article  CAS  PubMed  Google Scholar 

  • Hoogenraad, C. C., & Bradke, F. (2009). Control of neuronal polarity and plasticity–a renaissance for microtubules? Trends in Cell Biology, 19(12), 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Horak, M., Petralia, R. S., Kaniakova, M., & Sans, N. (2014). ER to synapse trafficking of NMDA receptors. Frontiers in Cell Neuroscience, 8, 394.

    Article  Google Scholar 

  • Horn, G., Bradley, P., & Mccabe, B. J. (1985). Changes in the structure of synapses associated with learning. Journal of Neuroscience, 5(12), 3161–3168.

    CAS  PubMed  Google Scholar 

  • Houser, C. R., Crawford, G. D., Salvaterra, P. M., & Vaughn, J. E. (1985). Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses. Journal of Comparative Neurology, 234(1), 17–34.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H., Gan, J., & Jonas, P. (2014). Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science, 345(6196), 1255263.

    Article  CAS  PubMed  Google Scholar 

  • Huganir, R. L., & Nicoll, R. A. (2013). AMPARs and synaptic plasticity: The last 25 years. Neuron, 80(3), 704–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, M. (1976). Fine-structure of olfactory-bulb in goldfish Carassius-Auratus. Brain Research, 115(1), 53–56.

    Article  Google Scholar 

  • Jahr, C. E., & Nicoll, R. A. (1982). An Intracellular analysis of dendrodendritic inhibition in the turtle invitro Olfactory-Bulb. Journal of Physiology-London, 326(May), 213–234.

    Article  CAS  Google Scholar 

  • Jedlicka, P., Vlachos, A., Schwarzacher, S. W., & Deller, T. (2008). A role for the spine apparatus in LTP and spatial learning. Behavioural Brain Research, 192(1), 12–19.

    Article  PubMed  Google Scholar 

  • Johnston, D., & Amaral, D. G. (2004). Hippocampus. In G. M. Shepherd (Ed.), The synaptic organization of the brain (5th ed., pp. 455–498). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Jones, E. G., & Powell, T. P. (1969). Morphological variations in the dendritic spines of the neocortex. Journal of Cell Science, 5(2), 509–529.

    CAS  PubMed  Google Scholar 

  • Jones, E. G., & Powell, T. P. (1970). Electron microscopy of the somatic sensory cortex of the cat. I. Cell types and synaptic organization. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 257(812), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen, E. M. (2014). Animal evolution: looking for the first nervous system. Current Biology, 24(14), R655–R658.

    Article  CAS  PubMed  Google Scholar 

  • Kaifu, K., Akamatsu, T., & Segawa, S. (2008). Underwater sound detection by cephalopod statocyst. Fisheries Science, 74(4), 781–786.

    Article  CAS  Google Scholar 

  • Kapadia, S. E., de Lanerolle, N. C., & LaMotte, C. C. (1985). Immunocytochemical and electron microscopic study of serotonin neuronal organization in the dorsal raphe nucleus of the monkey. Neuroscience, 15(3), 729–746.

    Article  CAS  PubMed  Google Scholar 

  • Kasa, P., Dobo, E., & Wolff, J. R. (1991). Cholinergic innervation of the mouse superior cervical ganglion: light- and electron-microscopic immunocytochemistry for choline acetyltransferase. Cell and Tissue Research, 265(1), 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Keenan, C. L., Coss, R., & Koopowitz, H. (1981). Cytoarchitecture of primitive brains: Golgi studies in flatworms. Journal of Comparative Neurology, 195(4), 697–716.

    Article  CAS  PubMed  Google Scholar 

  • Kelava, I., Rentzsch, F., & Technau, U. (2015). Evolution of eumetazoan nervous systems: Insights from cnidarians. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1684), 20150065. doi:10.1098/rstb.2015.0065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, D. E., & Smith, S. W. (1964). Fine structure of the pineal organs of the adult frog, Rana Pipiens. Journal of Cell Biology, 22, 653–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott, G. W., Quairiaux, C., Genoud, C., & Welker, E. (2002). Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron, 34(2), 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Koizumi, O., Sato, N., & Goto, C. (2004). Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: A review. Hydrobiologia, 530, 41–47.

    Google Scholar 

  • Kolb, H. (1977). The organization of the outer plexiform layer in the retina of the cat: Electron microscopic observations. Journal of Neurocytology, 6(2), 131–153.

    Article  CAS  PubMed  Google Scholar 

  • Kopec, C. D., Real, E., Kessels, H. W., & Malinow, R. (2007). GluR1 links structural and functional plasticity at excitatory synapses. Journal of Neuroscience, 27(50), 13706–13718.

    Article  CAS  PubMed  Google Scholar 

  • Korkotian, E., Frotscher, M., & Segal, M. (2014). Synaptopodin regulates spine plasticity: Mediation by calcium stores. Journal of Neuroscience, 34(35), 11641–11651.

    Article  CAS  PubMed  Google Scholar 

  • Korkotian, E., & Segal, M. (2007). Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. Cell Calcium, 42(1), 41–57.

    Article  CAS  PubMed  Google Scholar 

  • Kotsyuba, E. P., & Kotsyuba, A. E. (2002). Ultrastructural characteristics of interneuronal connections of the central nervous system of bivalve molluscs. Journal of Evolutionary Biochemistry and Physiology, 38(3), 330–335.

    Article  Google Scholar 

  • Kramer, R. H., & Davenport, C. M. (2015). Lateral inhibition in the vertebrate retina: The case of the missing neurotransmitter. PLoS Biology, 13(12), e1002322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota, Y., Hatada, S., Kondo, S., Karube, F., & Kawaguchi, Y. (2007). Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. Journal of Neuroscience, 27(5), 1139–1150.

    Article  CAS  PubMed  Google Scholar 

  • Lacalli, T. C. (2002). The dorsal compartment locomotory control system in amphioxus larvae. Journal of Morphology, 252(3), 227–237.

    Article  PubMed  Google Scholar 

  • Lacalli, T. C., & Kelly, S. J. (2003). Sensory pathways in amphioxus larvae II. Dorsal tracts and translumenal cells. Acta Zoologica, 84(1), 1–13.

    Article  Google Scholar 

  • Ladepeche, L., Dupuis, J. P., Bouchet, D., Doudnikoff, E., Yang, L., Campagne, Y., et al. (2013). Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci U S A, 110(44), 18005–18010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, K. O., & Ip, N. Y. (2013). Structural plasticity of dendritic spines: The underlying mechanisms and its dysregulation in brain disorders. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1832(12), 2257–2263.

    Article  CAS  Google Scholar 

  • Lamb, T. D., Collin, S. P., & Pugh, E. N. (2007). Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience, 8(12), 960–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb, T. D., Pugh, E. N, Jr, & Collin, S. P. (2008). The origin of the vertebrate eye. Evolution Eduation and Outreach, 1, 415–426.

    Article  Google Scholar 

  • Lannoo, M. J., & Hawkes, R. (1997). A search for primitive Purkinje cells: Zebrin II expression in sea lampreys (Petromyzon marinus). Neuroscience Letters, 237(1), 53–55.

    Article  CAS  PubMed  Google Scholar 

  • Laughlin, S. B. (1973). Neural integration in first optic neuropil of dragonflies. 1. signal amplification in Dark-Adapted second-order Neurons. Journal of Comparative Physiology, 84(4), 335–355.

    Article  Google Scholar 

  • Lawrence, J. J., & McBain, C. J. (2003). Interneuron diversity series: Containing the detonation–feedforward inhibition in the CA3 hippocampus. Trends in Neurosciences, 26(11), 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, T., Hess, M., Wanner, G., & Melzer, R. R. (2014). Dissecting a neuron network: FIB-SEM-based 3D-reconstruction of the visual neuropils in the sea spider Achelia langi (Dohrn, 1881) (Pycnogonida). BMC Biology, 12, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leiss, F., Groh, C., Butcher, N. J., Meinertzhagen, I. A., & Tavosanis, G. (2009a). Synaptic organization in the adult Drosophila mushroom body calyx. Journal of Comparative Neurology, 517(6), 808–824.

    Article  PubMed  Google Scholar 

  • Leiss, F., Koper, E., Hein, I., Fouquet, W., Lindner, J., Sigrist, S., & Tavosanis, G. (2009b). Characterization of dendritic spines in the Drosophila central nervous system. Dev Neurobiol, 69(4), 221–234.

    Article  CAS  PubMed  Google Scholar 

  • Lenn, N. J., Leranth, C., & Zaborszky, L. (1985). Choline acetyltransferase immunoreactivity is localized to four types of synapses in the rat interpeduncular nucleus. Journal of Neurocytology, 14(6), 909–919.

    Article  CAS  PubMed  Google Scholar 

  • Leys, S. P. (2015). Elements of a ‘nervous system’ in sponges. Journal of Experimental Biology, 218(Pt 4), 581–591.

    Article  PubMed  Google Scholar 

  • Li, Y., Hough, C. J., Frederickson, C. J., & Sarvey, J. M. (2001). Induction of mossy fiber →Ca3 long-term potentiation requires translocation of synaptically released Zn2+. Journal of Neuroscience, 21(20), 8015–8025.

    CAS  PubMed  Google Scholar 

  • Lichnerova, K., Kaniakova, M., Park, S. P., Skrenkova, K., Wang, Y. X., Petralia, R. S., et al. (2015). Two N-glycosylation sites in the GluN1 subunit are essential for releasing N-methyl-d-aspartate (NMDA) receptors from the Endoplasmic reticulum. Journal of Biological Chemistry, 290(30), 18379–18390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman, A. R. (1971). Microtubule-associated smooth endoplasmic reticulum in the frog’s brain. Z Zellforsch Mikrosk Anat, 116(4), 564–577.

    Article  CAS  PubMed  Google Scholar 

  • Llinás, R. R., Walton, K. D., & Lang, E. J. (2004). Cerebellum. In G. M. Shepherd (Ed.), The synaptic organization of the brain (5th ed., pp. 271–309). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Lopez-Garcia, C., & Martinez-Guijarro, F. J. (1988). Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards. Brain Research, 463(2), 205–217.

    Article  CAS  PubMed  Google Scholar 

  • Mackie, G. O., Lawn, I. D., & Dececcatty, M. P. (1983). Studies on Hexactinellid Sponges. 2. Excitability, conduction and coordination of responses in Rhabdocalyptus-Dawsoni (Lambe, 1873). Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 301(1107), 401–418.

    Article  Google Scholar 

  • Maggio, N., & Vlachos, A. (2014). Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience, 281C, 135–146.

    Article  CAS  Google Scholar 

  • Mäntylä, K., Reuter, M., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C., & Gustafsson, M. K. S. (1998). The nervous system of Procerodes littoralis (Maricola, Tricladida). An ultrastructural and immunoelectron microscopical study. Acta Zoologica, 79(1), 1–8.

    Article  Google Scholar 

  • Marlow, H. Q., Srivastava, M., Matus, D. Q., Rokhsar, D., & Martindale, M. Q. (2009). Anatomy and development of the nervous system of Nematostella vectensis, an Anthozoan Cnidarian. Developmental Neurobiology, 69(4), 235–254.

    Article  CAS  PubMed  Google Scholar 

  • Martin, V. J. (2002). Photoreceptors of cnidarians. Canadian Journal of Zoology, 80(10), 1703–1722.

    Article  CAS  Google Scholar 

  • Martin, V. J. (2004). Photoreceptors of cubozoan jellyfish. Hydrobiologia, 530, 135–144.

    Google Scholar 

  • Martinez Guijarro, F. J., Berbel, P. J., Molowny, A., & Lopez Garcia, C. (1984). Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta). Anatomy and Embryology (Berl), 170(3), 321–326.

    Article  CAS  Google Scholar 

  • Mashanov, V. S., Zueva, O. R., & Heinzeller, T. (2008). Regeneration of the radial nerve cord in a holothurian: A promising new model system for studying post-traumatic recovery in the adult nervous system. Tissue and Cell, 40(5), 351–372.

    Article  PubMed  Google Scholar 

  • Mashanov, V. S., Zueva, O. R., Heinzeller, T., & Dolmatov, I. Y. (2006). Ultrastructure of the circumoral nerve ring and the radial nerve cords in holothurians (Echinodermata). Zoomorphology, 125(1), 27–38.

    Article  Google Scholar 

  • Meek, J., & Nieuwenhuys, R. (1991). Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study. Journal of Comparative Neurology, 306(1), 156–192.

    Article  CAS  PubMed  Google Scholar 

  • Megias, M., Emri, Z., Freund, T. F., & Gulyas, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102(3), 527–540.

    Article  CAS  PubMed  Google Scholar 

  • Meinertzhagen, I. A., & O’Neil, S. D. (1991). Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. Journal of Comparative Neurology, 305(2), 232–263.

    Article  CAS  PubMed  Google Scholar 

  • Miglietta, M. P., Della Tommasa, L., Denitto, F., Gravili, C., Pagliara, P., Bouillon, J., & Boero, F. (2000). Approaches to the ethology of hydroids and medusae (Cnidaria, Hydrozoa). Scientia Marina, 64, 63–71.

    Article  Google Scholar 

  • Mikami, Y., Yoshida, T., Matsuda, N., & Mishina, M. (2004). Expression of zebrafish glutamate receptor delta2 in neurons with cerebellum-like wiring. Biochem Biophys Res Commun, 322(1), 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Milhaud, M., & Pappas, G. D. (1966). Postsynaptic bodies in Habenula and interpeduncular Nuclei of cat. Journal of Cell Biology, 30(2), 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min, M. Y., Rusakov, D. A., & Kullmann, D. M. (1998). Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: Role of glutamate diffusion. Neuron, 21(3), 561–570.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, N., & Nakamura, Y. (1972). An electron microscope study of the locus coeruleus in the rabbit, with special reference to direct hypothalamic and mesencephalic projections. Archives of Histology Japan, 34(5), 433–448.

    Article  CAS  Google Scholar 

  • Moraczewski, J., Czubaj, A., & Bakowska, J. (1977). Organization and ultrastructure of nervous-system in Catenulida (Turbellaria). Zoomorphologie, 87(1), 87–95.

    Article  Google Scholar 

  • Morita, M., & Best, J. B. (1966). Electron microscopic studies of planaria. 3. Some observations on fine structure of planarian nervous tissue. Journal of Experimental Zoology, 161(3), 391–412.

    Article  CAS  PubMed  Google Scholar 

  • Moroz, L. L., Kocot, K. M., Citarella, M. R., Dosung, S., Norekian, T. P., Povolotskaya, I. S., et al. (2014). The ctenophore genome and the evolutionary origins of neural systems. Nature, 510(7503), 109–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroz, L. L., & Kohn, A. B. (2016). Independent origins of neurons and synapses: Insights from ctenophores. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 371(1685), 20150041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moshkov, D. A., Shtanchaev, R. S., Mikheeva, I. B., Bezgina, E. N., Kokanova, N. A., Mikhailova, G. Z., et al. (2013). Visual input controls the functional activity of goldfish Mauthner neuron through the reciprocal synaptic mechanism. Journal of Integrative Neuroscience, 12(1), 17–34.

    Article  PubMed  Google Scholar 

  • Mugnaini, E. (1972). The histology and cytology of the cerebellar cortex. In O. Larsell & J. Jansen (Eds.), The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex (pp. 201–264 + 267 plates). Minneapolis: The University of Minnesota Press.

  • Muller, J. F., Mascagni, F., Zaric, V., Mott, D. D., & McDonald, A. J. (2016). Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis. Journal of Comparative Neurology,. doi:10.1002/cne.23959.

    PubMed  Google Scholar 

  • Muller, K. J., & McMahan, U. J. (1976). The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: a study using intracellular injection of horseradish peroxidase. Proceedings of the Royal Society of London. Series B: Biological Sciences, 194(1117), 481–499.

    Article  CAS  Google Scholar 

  • Mundel, P., Heid, H. W., Mundel, T. M., Kruger, M., Reiser, J., & Kriz, W. (1997). Synaptopodin: An actin-associated protein in telencephalic dendrites and renal podocytes. Journal of Cell Biology, 139(1), 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, M., Zimmer, J., & Raisman, G. (1979). Quantitative electron-microscopic evidence for Re-innervation in the adult-Rat interpeduncular nucleus after lesions of the fasciculus retroflexus. Journal Of Comparative Neurology, 187(2), 447–468.

    Article  CAS  PubMed  Google Scholar 

  • Nag, T. C., & Wadhwa, S. (2012). Ultrastructure of the human retina in aging and various pathological states. Micron, 43(7), 759–781.

    Article  PubMed  Google Scholar 

  • Nakamura, P. A., & Cramer, K. S. (2011). Formation and maturation of the calyx of Held. Hearing Research, 276(1–2), 70–78.

    Article  PubMed  Google Scholar 

  • Nässel, D. R. (1977). Types and arrangements of neurons in crayfish optic lamina. Cell and Tissue Research, 179(1), 45–75.

    PubMed  Google Scholar 

  • Nässel, D. R., & Strausfeld, N. J. (1982). A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects. Cell and Tissue Research, 226(2), 355–362.

    PubMed  Google Scholar 

  • Nässel, D. R., & Waterman, T. H. (1977). Golgi em evidence for visual formation channeling in crayfish lamina ganglionaris. Brain Research, 130(3), 556–563.

    Article  Google Scholar 

  • Nek, N., Schwegler, H., Crusio, W. E., & Frotscher, M. (1993). Are the fine-structural characteristics of mouse hippocampal mossy fiber synapses determined by the density of mossy fiber axons. Neuroscience Letters, 158(1), 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, R., Lutzow, A. V., Kolb, H., & Gouras, P. (1975). Horizontal cells in cat retina with independent dendritic systems. Science, 189(4197), 137–139.

    Article  CAS  PubMed  Google Scholar 

  • Newpher, T. M., & Ehlers, M. D. (2009). Spine microdomains for postsynaptic signaling and plasticity. Trends in Cell Biology, 19(5), 218–227.

    Article  PubMed  Google Scholar 

  • Nickel, M. (2004). Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). Journal of Experimental Biology, 207(26), 4515–4524.

    Article  PubMed  Google Scholar 

  • Nicoll, R. A., & Schmitz, D. (2005). Synaptic plasticity at hippocampal mossy fibre synapses. Nature Reviews Neuroscience, 6(11), 863–876.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, D. E., Gislen, L., Coates, M. M., Skogh, C., & Garm, A. (2005). Advanced optics in a jellyfish eye. Nature, 435(7039), 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Nitsch, C., & Rinne, U. (1981). Large Dense-Core vesicle exocytosis and membrane recycling in the mossy fiber synapses of the rabbit hippocampus during epileptiform seizures. Journal of Neurocytology, 10(2), 201–219.

    Article  CAS  PubMed  Google Scholar 

  • Nomokonova, L. M., & Ozirskaya, E. V. (1984). Morphological study of middle and posterior hypothalamic projections to forebrain in the pond turtle. Neuroscience and Behavioral Physiology, 14(4), 282–290.

    Article  CAS  PubMed  Google Scholar 

  • Oksche, A., & von Harnack, M. (1963). Elektronenmikroskopische Untersuchungen Am Stirnorgan Von Anuren - (Zur Frage Der Lichtrezeptoren). Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 59(2), 239–288.

    Article  CAS  PubMed  Google Scholar 

  • Okubo, Y., Suzuki, J., Kanemaru, K., Nakamura, N., Shibata, T., & Iino, M. (2015). Visualization of Ca2+ filling mechanisms upon synaptic inputs in the endoplasmic reticulum of cerebellar Purkinje cells. Journal of Neuroscience, 35(48), 15837–15846.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, D., Brinkmann, M., Sieger, T., & Thurm, U. (2008). Hydrozoan nematocytes send and receive synaptic signals induced by mechanochemical stimuli. Journal of Experimental Biology, 211(17), 2876–2888.

    Article  PubMed  Google Scholar 

  • Orth, C. B., Schultz, C., Muller, C. M., Frotscher, M., & Deller, T. (2007). Loss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin-deficient mice. Journal of Comparative Neurology, 504(5), 441–449.

    Article  Google Scholar 

  • Palay, S. L., & Chan-Palay, V. (1974). Cerebellar cortex. cytology and organization. New York: Springer.

    Book  Google Scholar 

  • Palay, S. L., Sotelo, C., Peters, A., & Orkand, P. M. (1968). Axon hillock and initial segment. Journal of Cell Biology, 38(1), 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoletti, P., Bellone, C., & Zhou, Q. (2013). NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience, 14(6), 383–400.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos, G. C., Parnavelas, J. G., & Buijs, R. M. (1989). Light and electron microscopic immunocytochemical analysis of the noradrenaline innervation of the rat visual cortex. Journal of Neurocytology, 18(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Pardos, F., Roldan, C., Benito, J., & Emig, C. C. (1991). Fine-Structure of the tentacles of Phoronis-Australis Haswell (Phoronida, Lophophorata). Acta Zoologica, 72(2), 81–90.

    Article  Google Scholar 

  • Parkefelt, L., Skogh, C., Nilsson, D. E., & Ekstrom, P. (2005). Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa). Journal of Comparative Neurology, 492(3), 251–262.

    Article  PubMed  Google Scholar 

  • Pasch, E., Muenz, T. S., & Rossler, W. (2011). CaMKII is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain. Journal of Comparative Neurology, 519(18), 3700–3712.

    Article  CAS  PubMed  Google Scholar 

  • Pasik, T., & Pasik, P. (1982). Serotoninergic afferents in the monkey neostriatum. Acta biologica Academiae Scientiarum Hungaricae, 33(2–3), 277–288.

    CAS  PubMed  Google Scholar 

  • Pavans de Ceccatty, M. (1966). Ultrastructures et rapports des cellules mesenchymateuses de type nerveux de l’eponge Tethya lyncurium Link. Annals Science Nature Zoology, 8, 577–614.

    Google Scholar 

  • Peña-Contreras, Z., Mendoza-Briceno, R. V., Miranda-Contreras, L., & Palacios-Pru, E. L. (2007). Synaptic dimorphism in Onychophoran cephalic ganglia. Revista de Biologia Tropical, 55(1), 261–267.

    PubMed  Google Scholar 

  • Peters, B. H., & Campbell, A. C. (1987). Morphology of the nervous and muscular systems in the heads of pedicellariae from the Sea-Urchin Echinus-Esculentus L. Journal of Morphology, 193(1), 35–51.

    Article  Google Scholar 

  • Peters, A., & Kaiserman-Abramof, I. R. (1970). The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. American Journal of Anatomy, 127(4), 321–355.

    Article  CAS  PubMed  Google Scholar 

  • Peters, A., Palay, S. L., & Webster, Hd. (1991). The fine structure of the nervous system. Neurons and their supporting cells (3rd ed.). New York: Oxford.

    Google Scholar 

  • Petralia, R. S. (2012). Distribution of extrasynaptic NMDA receptors on neurons. Scientific World Journal. doi:10.1100/2012/267120.

    PubMed  PubMed Central  Google Scholar 

  • Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014). Communication breakdown: The impact of ageing on synapse structure. Ageing Research and Reviews, 14, 31–42.

    Article  CAS  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Hua, F., Yi, Z., Zhou, A., Ge, L., et al. (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167(1), 68–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Mattson, M. P., & Yao, P. J. (2011). Sonic hedgehog distribution within mature hippocampal neurons. Communicative and Integrative Biology, 4(6), 775–777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Mattson, M. P., & Yao, P. J. (2015). Structure, distribution, and function of neuronal/synaptic spinules and related invaginating projections. Neuromolecular Medicine, 17(3), 211–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Sans, N., Worley, P. F., Hammer, J. A, 3rd, & Wenthold, R. J. (2001). Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. European Journal of Neuroscience, 13(9), 1722–1732.

    Article  CAS  PubMed  Google Scholar 

  • Petralia, R. S., Wang, Y. X., & Wenthold, R. J. (2002). NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli. European Journal of Neuroscience, 15(3), 583–587.

    Article  PubMed  Google Scholar 

  • Petralia, R. S., Wang, Y. X., Zhao, H. M., & Wenthold, R. J. (1996). Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus. Journal of Comparative Neurology, 372(3), 356–383.

    Article  CAS  PubMed  Google Scholar 

  • Petralia, R. S., & Wenthold, R. J. (1992). Light and electron immunocytochemical localization of ampa-selective glutamate receptors in the rat-brain. Journal of Comparative Neurology, 318(3), 329–354.

    Article  CAS  PubMed  Google Scholar 

  • Petralia, R. S., & Wenthold, R. J. (1998). Glutamate receptor antibodies. Production and Immunocytochemistry. In M. A. Ariano (Ed.), Receptor localization: Laboratory methods and procedures (pp. 46–74). New York: Wiley.

    Google Scholar 

  • Petralia, R. S., & Wenthold, R. J. (1999). Immunocytochemistry of NMDA receptors. Methods in Molecular Biology, 128, 73–92.

    CAS  PubMed  Google Scholar 

  • Pisani, D., Pett, W., Dohrmann, M., Feuda, R., Rota-Stabelli, O., Philippe, H., et al. (2015). Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of National Academy of Science USA112(50), 15402–15407.

    Article  CAS  Google Scholar 

  • Price, J. L., & Powell, T. P. S. (1970a). An electron-microscopic study of termination of afferent fibres to olfactory bulb from cerebral hemisphere. Journal of Cell Science, 7(1), 157–187.

    CAS  PubMed  Google Scholar 

  • Price, J. L., & Powell, T. P. S. (1970b). Synaptology of granule cells of olfactory bulb. Journal of Cell Science, 7(1), 125–155.

    CAS  PubMed  Google Scholar 

  • Prince, F. P., & Jones-Witters, P. H. (1974). The ultrstructure of the medical preoptic area of the rat. Cell and Tissue Research, 153(4), 517–530.

    Article  CAS  PubMed  Google Scholar 

  • Purves, D., & McMahan, U. J. (1972). The distribution of synapses on a physiologically identified motor neuron in the central nervous system of the leech. An electron microscope study after the injection of the fluorescent dye procion yellow. Journal of Cell Biology, 55(1), 205–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racz, B., & Weinberg, R. J. (2013). Microdomains in forebrain spines: An ultrastructural perspective. Molecular Neurobiology, 47(1), 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120(2), 107–118.

    Article  Google Scholar 

  • Rall, W. (1974). Dendritic spines, synaptic potency and neuronal plasticity. In C. D. Woody, K. A. Brown, T. J. Crow, & J. D. Knispel (Eds.), Cellular mechanisms subserving changes in neuronal activity (pp. 13–21). Los Angeles, CA: Brain Information Service.

    Google Scholar 

  • Rall, W., & Rinzel, J. (1971). Dendritic spine function and synaptic attenuation calculations. Society for Neuroscience Abstracts, 1, 64.

    Google Scholar 

  • Rall, W., & Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical Journal, 13(7), 648–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rall, W., & Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 31(6), 884–915.

    CAS  PubMed  Google Scholar 

  • Rall, W., Shepherd, G. M., Reese, T. S., & Brightma, M. W. (1966). Dendrodendritic synaptic pathway for inhibition in olfactory bulb. Experimental Neurology, 14(1), 44–56.

    Article  CAS  PubMed  Google Scholar 

  • Rehkämper, G., & Welsch, U. (1985). On the fine-structure of the cerebral ganglion of sagitta (Chaetognatha). Zoomorphology, 105(2), 83–89.

    Article  Google Scholar 

  • Reuter, M. (1981). The nervous-system of microstomum-lineare (Turbellaria, Macrostomida).2. The ultrastructure of synapses and neurosecretory release sites. Cell and Tissue Research, 218(2), 375–387.

    Article  CAS  PubMed  Google Scholar 

  • Reuter, M., & Palmberg, I. (1990). Synaptic and nonsynaptic release in Stenostomum-Leucops. A study of the nervous-system and sensory receptors. Early Brain, 5, 121–136.

    Google Scholar 

  • Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., & Wearne, S. L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One, 3(4), e1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollenhagen, A., Satzler, K., Rodriguez, E. P., Jonas, P., Frotscher, M., & Lubke, J. H. R. (2007). Structural determinants of transmission at large hippocampal mossy fiber Synapses. Journal of Neuroscience, 27(39), 10434–10444.

    Article  CAS  PubMed  Google Scholar 

  • Root, D. H., Mejias-Aponte, C. A., Zhang, S., Wang, H. L., Hoffman, A. F., Lupica, C. R., & Morales, M. (2014). Single rodent mesohabenular axons release glutamate and GABA. Nature Neuroscience, 17(11), 1543–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluth, J. (1962). Subsurface cisterns and their relationship to the neuronal plasma membrane. Journal of Cell Biology, 13, 405–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluth, J. (1965). Ultrastructure of somatic muscle cells in Ascaris lumbricoides. II. Intermuscular junctions, neuromuscular junctions, and glycogen stores. Journal of Cell Biology, 26(2), 579–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan, J. F., & Chiodin, M. (2015). Where is my mind? How sponges and placozoans may have lost neural cell types. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1684), 20150059. doi:10.1098/rstb.2015.0059.

    Article  PubMed  Google Scholar 

  • Ryugo, D. K., Montey, K. L., Wright, A. L., Bennett, M. L., & Pongstaporn, T. (2006). Postnatal development of a large auditory nerve terminal: the endbulb of held in cats. Hearing Research, 216–217, 100–115.

    Article  PubMed  Google Scholar 

  • Sala, C., & Segal, M. (2014). Dendritic spines: The locus of structural and functional plasticity. Physiological Reviews, 94(1), 141–188.

    Article  CAS  PubMed  Google Scholar 

  • Sätzler, K., Söhl, L. F., Bollmann, J. H., Borst, J. G. G., Frotscher, M., Sakmann, B., & Lübke, J. H. R. (2002). Three-dimensional reconstruction of a calyx of held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. Journal of Neuroscience, 22(24), 10567–10579.

    PubMed  Google Scholar 

  • Schaeffer, S. F., & Raviola, E. (1976). Ultrastructural analysis of functional changes in the synaptic endings of turtle cone cells. Cold Spring Harbor Symposia on Quantitative Biology, 40, 521–528.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, B., Marrone, D. F., & Markus, E. J. (2012). Disambiguating the similar: the dentate gyrus and pattern separation. Behavioural Brain Research, 226(1), 56–65.

    Article  PubMed  Google Scholar 

  • Schürmann, F. W. (1978). Note on structure of synapses in ventral nerve cord of onychophoran Peripatoides-Leuckarti. Cell and Tissue Research, 186(3), 527–534.

    Article  PubMed  Google Scholar 

  • Scott, E. K., Reuter, J. E., & Luo, L. (2003). Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. Journal of Neuroscience, 23(8), 3118–3123.

    CAS  PubMed  Google Scholar 

  • Segal, M., & Korkotian, E. (2014). Endoplasmic reticulum calcium stores in dendritic spines. Front Neuroanat, 8, 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal, M., Vlachos, A., & Korkotian, E. (2010). The spine apparatus, synaptopodin, and dendritic spine plasticity. Neuroscientist, 16(2), 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Segev, I., & Rall, W. (1988). Computational study of an excitable dendritic spine. Journal of Neurophysiology, 60(2), 499–523.

    CAS  PubMed  Google Scholar 

  • Séguéla, P., Watkins, K. C., & Descarries, L. (1989). Ultrastructural relationships of serotonin axon terminals in the cerebral-cortex of the adult-rat. Journal of Comparative Neurology, 289(1), 129–142.

    Article  PubMed  Google Scholar 

  • Séguéla, P., Watkins, K. C., Geffard, M., & Descarries, L. (1990). Noradrenaline axon terminals in adult-rat neocortex: An immunocytochemical analysis in serial thin-sections. Neuroscience, 35(2), 249–264.

    Article  PubMed  Google Scholar 

  • Sharp, A. H., McPherson, P. S., Dawson, T. M., Aoki, C., Campbell, K. P., & Snyder, S. H. (1993). Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. Journal of Neuroscience, 13(7), 3051–3063.

    CAS  PubMed  Google Scholar 

  • Shaw, S. R. (1978). Extracellular-space and blood-eye barrier in an insect retina: Ultrastructural-study. Cell and Tissue Research, 188(1), 35–61.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, G. M. (1996). The dendritic spine: A multifunctional integrative unit. Journal of Neurophysiology, 75(6), 2197–2210.

    CAS  PubMed  Google Scholar 

  • Shepherd, G. M. (2004). The synaptic organization of the brain (5th ed.). New York: Oxford University Press.

    Book  Google Scholar 

  • Shepherd, G. M., Chen, W. R., Willhite, D., Migliore, M., & Greer, C. A. (2007). The olfactory granule cell: From classical enigma to central role in olfactory processing. Brain Research Reviews, 55(2), 373–382.

    Article  PubMed  Google Scholar 

  • Singla, C. L. (1978). Fine structure of the neuromuscular system of Polyorchis penicillatus (Hydromedusae, Cnidaria). Cell and Tissue Research, 193(1), 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Smith, Y., Bennett, B. D., Bolam, J. P., Parent, A., & Sadikot, A. F. (1994). Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. Journal of Comparative Neurology, 344(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. L., Pivovarova, N., & Reese, T. S. (2015). Coordinated feeding behavior in trichoplax, an animal without synapses. PLoS One, 10(9), e0136098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, C. L., Varoqueaux, F., Kittelmann, M., Azzam, R. N., Cooper, B., Winters, C. A., et al. (2014). Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Current Biology, 24(14), 1565–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2003). Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse. Synapse, 50(1), 53–66.

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian, J. J., Descarries, L., & Watkins, K. C. (1989). Serotonin innervation in adult-rat neostriatum. 2. Ultrastructural features: A autoradiographic and immunocytochemical study. Brain Research, 481(1), 67–86.

    Article  CAS  PubMed  Google Scholar 

  • Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10(5), 501–511.

    Article  CAS  PubMed  Google Scholar 

  • Spacek, J. (1982). ‘Free’ postsynaptic-like densities in normal adult brain: their occurrence, distribution, structure and association with subsurface cisterns. Journal of Neurocytology, 11(5), 693–706.

    Article  CAS  PubMed  Google Scholar 

  • Spacek, J. (1985). Three-dimensional analysis of dendritic spines. II. Spine apparatus and other cytoplasmic components. Anatomy and Embryology (Berl), 171(2), 235–243.

    Article  CAS  Google Scholar 

  • Spacek, J., & Harris, K. M. (1997). Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. Journal of Neuroscience, 17(1), 190–203.

    CAS  PubMed  Google Scholar 

  • Spacek, J., & Lieberman, A. R. (1974). Ultrastructure and three-dimensional organization of synaptic glomeruli in rat somatosensory thalamus. Journal of Anatomy, 117(Pt 3), 487–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanelli, A., & Caravita, S. (1970). Ultrastructural features of the synaptic complex of the vestibular nuclei of Lampetra planeri (Bloch). Z Zellforsch Mikrosk Anat, 108(2), 282–296.

    Article  CAS  PubMed  Google Scholar 

  • Stein, I. S., Gray, J. A., & Zito, K. (2015). Non-ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. Journal of Neuroscience, 35(35), 12303–12308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterling, P., & Demb, J. B. (2004). Retina. In G. M. Shepherd (Ed.), The synaptic organization of the brain (5th ed., pp. 217–269). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Sterling, P., & Matthews, G. (2005). Structure and function of ribbon synapses. Trends in Neurosciences, 28(1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Steward, O., & Reeves, T. M. (1988). Protein-synthetic machinery beneath postsynaptic sites on cns neurons: Association between polyribosomes and other organelles at the synaptic site. Journal of Neuroscience, 8(1), 176–184.

    CAS  PubMed  Google Scholar 

  • Stewart, M. G., Davies, H. A., Sandi, C., Kraev, I. V., Rogachevsky, V. V., Peddie, C. J., et al. (2005). Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: A three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience, 131(1), 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Stieb, S. M., Muenz, T. S., Wehner, R., & Rossler, W. (2010). Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Developmental Neurobiology, 70(6), 408–423.

    Article  PubMed  Google Scholar 

  • Strausfeld, N. J., & Barth, F. G. (1993). 2 Visual systems in one brain: Neuropils serving the secondary eyes of the spider Cupiennius-Salei. Journal of Comparative Neurology, 328(1), 43–62.

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld, N. J., Strausfeld, C. M., Stowe, S., Rowell, D., & Loesel, R. (2006). The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Structure & Development, 35(3), 169–196.

    Article  CAS  Google Scholar 

  • Strausfeld, N. J., Weltzien, P., & Barth, F. G. (1993). 2 visual systems in one brain: Neuropils serving the principal eyes of the spider Cupiennius-Salei. Journal of Comparative Neurology, 328(1), 63–75.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, R. K. P., WoldeMussie, E., & Pow, D. V. (2007). Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Investigative Ophthalmology & Visual Science, 48(6), 2782–2791.

    Article  Google Scholar 

  • Sutula, T., Cascino, G., Cavazos, J., Parada, I., & Ramirez, L. (1989). Mossy fiber synaptic reorganization in the epileptic human Temporal-Lobe. Annals of Neurology, 26(3), 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K. (1967). Special somatic spine synapses in ciliary ganglion of Chick. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 83(1), 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Takasaka, T., & Smith, C. A. (1971). The structure and innervation of the pigeon’s basilar papilla. Journal of Ultrastructure Research, 35(1), 20–65.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., & Smith, C. A. (1978). Structure of the chicken’s inner ear: SEM and TEM study. American Journal of Anatomy, 153(2), 251–271.

    Article  CAS  PubMed  Google Scholar 

  • Tao-Cheng, J. H., Gallant, P. E., Brightman, M. W., Dosemeci, A., & Reese, T. S. (2007). Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. Journal of Comparative Neurology, 501(5), 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Tardent, P., & Schmid, V. (1972). Ultrastructure of mechanoreceptors of Polyp Coryne-Pintneri (Hydrozoa, Athecata). Experimental Cell Research, 72(1), 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuoka, H., & Reese, T. S. (1989). New structural features of synapses in the anteroventral cochlear nucleus prepared by direct freezing and freeze-substitution. Journal of Comparative Neurology, 290(3), 343–357.

    Article  CAS  PubMed  Google Scholar 

  • Toth, M. L., Melentijevic, I., Shah, L., Bhatia, A., Lu, K., Talwar, A., & Driscoll, M. (2012). Neurite sprouting and synapse deterioration in the aging caenorhabditis Elegans nervous system. Journal of Neuroscience, 32(26), 8778–8790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treves, A., Tashiro, A., Witter, M. P., & Moser, E. I. (2008). What is the mammalian dentate gyrus good for? Neuroscience, 154(4), 1155–1172.

    Article  CAS  PubMed  Google Scholar 

  • Trudeau, L. E., Hnasko, T. S., Wallen-Mackenzie, A., Morales, M., Rayport, S., & Sulzer, D. (2014). The multilingual nature of dopamine neurons. Progress in Brain Research, 211, 141–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo-Cenoz, O. (1965). Some aspects of structural organization of arthropod eye. Cold Spring Harbor Symposia on Quantitative Biology, 30, 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Cenoz, O., & Melamed, J. (1967). Fine structure of visual system of Lycosa (Araneae - Lycosidae). 2. Primary visual centers. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 76(3), 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Tzingounis, A. V., & Wadiche, J. I. (2007). Glutamate transporters: Confining runaway excitation by shaping synaptic transmission. Nature Reviews Neuroscience, 8(12), 935–947.

    Article  CAS  PubMed  Google Scholar 

  • Ueno, S., Tsukamoto, M., Hirano, T., Kikuchi, K., Yamada, M. K., Nishiyama, N., et al. (2002). Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. Journal of Cell Biology, 158(2), 215–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbriaco, D., Watkins, K. C., Descarries, L., Cozzari, C., & Hartman, B. K. (1994). Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. Journal of Comparative Neurology, 348(3), 351–373.

    Article  CAS  PubMed  Google Scholar 

  • Vaaga, C. E., Borisovska, M., & Westbrook, G. L. (2014). Dual-transmitter neurons: functional implications of co-release and co-transmission. Current Opinion in Neurobiology, 29, 25–32.

    Article  CAS  PubMed  Google Scholar 

  • Vardi, N., Morigiwa, K., Wang, T. L., Shi, Y. J., & Sterling, P. (1998). Neurochemistry of the mammalian cone ‘synaptic complex’. Vision Research, 38(10), 1359–1369.

    Article  CAS  PubMed  Google Scholar 

  • Verney, C., Alvarez, C., Geffard, M., & Berger, B. (1990). Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in Rat anteromedial cerebral cortex. European Journal of Neuroscience, 2(11), 960–972.

    Article  PubMed  Google Scholar 

  • Veruki, M. L., Morkve, S. H., & Hartveit, E. (2006). Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nature Neuroscience, 9(11), 1388–1396.

    Article  CAS  PubMed  Google Scholar 

  • Vigh, B., Manzano, M. J., Zadori, A., Frank, C. L., Lukats, A., Rohlich, P., & David, C. (2002). Nonvisual photoreceptors of the deep brain, pineal organs and retina. Histology and Histopathology, 17(2), 555–590.

    CAS  PubMed  Google Scholar 

  • Vlachos, A., Korkotian, E., Schonfeld, E., Copanaki, E., Deller, T., & Segal, M. (2009). Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. Journal of Neuroscience, 29(4), 1017–1033.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, K. E., & Nicoll, R. A. (1999). Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proceedings of National Academy of Science USA, 96(3), 1118–1122.

    Article  CAS  Google Scholar 

  • Wainer, B. H., Bolam, J. P., Freund, T. F., Henderson, Z., Totterdell, S., & Smith, A. D. (1984). Cholinergic synapses in the rat brain: A correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase. Brain Research, 308(1), 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Wässle, H., Grünert, U., Chun, M. H., & Boycott, B. B. (1995). The rod pathway of the macaque monkey retina: Identification of AII-amacrine cells with antibodies against calretinin. Journal of Comparative Neurology, 361(3), 537–551.

    Article  PubMed  Google Scholar 

  • Weber, W., & Grosmann, M. (1977). Ultrastructure of basiepithelial nerve plexus of sea-urchin. Centrostephanus-Longispinus. Cell and Tissue Research, 175(4), 551–562.

    CAS  PubMed  Google Scholar 

  • Weber, B. H. F., Schrewe, H., Molday, L. L., Gehrig, A., White, K. L., Seeliger, M. W., et al. (2002). Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6222–6227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellis, D. P., & Kauer, J. S. (1994). Gabaergic and glutamatergic synaptic input to identified granule cells in salamander olfactory-bulb. Journal of Physiology-London, 475(3), 419–430.

    Article  CAS  Google Scholar 

  • Wells, J., Parsons, R. L., Besso, J. A., & Boldosse, W. G. (1972). Fine-structure of nerve cord of Myxicola-Infundibulum (Annelida, Polychaeta). Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 131(2), 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Westfall, J. A. (1996). Ultrastructure of synapses in the first-evolved nervous systems. Journal of Neurocytology, 25(12), 735–746.

    Article  CAS  PubMed  Google Scholar 

  • Westfall, J. A. (2004). Neural pathways and innervation of cnidocytes in tentacles of sea anemones. Hydrobiologia, 530, 117–121.

    Google Scholar 

  • White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1976). Structure of ventral nerve cord of Caenorhabditis-Elegans. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 275(938), 327–348.

    Article  CAS  Google Scholar 

  • White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous-system of the nematode Caenorhabditis-Elegans. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 314(1165), 1–340.

    Article  CAS  Google Scholar 

  • Whitehead, M. C., & Morest, D. K. (1985). The growth of cochlear fibers and the formation of their synaptic endings in the avian inner ear: A study with the electron microscope. Neuroscience, 14(1), 277–300.

    Article  CAS  PubMed  Google Scholar 

  • Wiera, G., & Mozrzymas, J. W. (2015). Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Frontiers in Cellular Science,. doi:10.3389/fncel.2015.00427.

    Google Scholar 

  • Wilson, C. J., Murakami, F., Katsumaru, H., & Tsukahara, N. (1987). Dendritic and somatic appendages of identified rubrospinal neurons of the cat. Neuroscience, 22(1), 113–130.

    Article  CAS  PubMed  Google Scholar 

  • Wolff, G., Harzsch, S., Hansson, B. S., Brown, S., & Strausfeld, N. (2012). Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: Correspondence with the mushroom body ground pattern. Journal of Comparative Neurology, 520(13), 2824–2846.

    Article  PubMed  Google Scholar 

  • Yamashita, T., Maeda, T., Tokunaga, Y., & Mano, T. (1997). Fine structure of crest synapses in the locus coeruleus of the Japanese macaque (Macaca fuscata), with special reference to noradrenergic neurons. Kaibogaku Zasshi, 72(3), 199–208.

    CAS  PubMed  Google Scholar 

  • Yamasu, T., & Yoshida, M. (1976). Fine-structure of complex ocelli of a cubomedusan. Tamoya-Bursaria Haeckel. Cell and Tissue Research, 170(3), 325–339.

    Article  CAS  PubMed  Google Scholar 

  • Yao, W. D., Spealman, R. D., & Zhang, J. (2008). Dopaminergic signaling in dendritic spines. Biochemical Pharmacology, 75(11), 2055–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuyama, K., Meinertzhagen, I. A., & Schurmann, F. W. (2003). Synaptic connections of cholinergic antennal lobe relay neurons innervating the lateral horn neuropile in the brain of Drosophila melanogaster. Journal of Comparative Neurology, 466(3), 299–315.

    Article  PubMed  Google Scholar 

  • Yung, K. K., Bolam, J. P., Smith, A. D., Hersch, S. M., Ciliax, B. J., & Levey, A. I. (1995). Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy. Neuroscience, 65(3), 709–730.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N. H., & Houser, C. R. (1999). Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: A study of reorganized mossy fiber synapses. Journal of Comparative Neurology, 405(4), 472–490.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Petralia, R. S., Wang, Y.-X., & Diamond, J. S. (2016). High-resolution quantitative immunogold analysis of membrane receptors at retinal ribbon synapses. JoVE, 108(e53547), 1–7.

    Google Scholar 

  • Zhang, S., Qi, J., Li, X., Wang, H. L., Britt, J. P., Hoffman, A. F., & Morales, M. (2015a). Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nature Neuroscience, 18(3), 386–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Wu, L., Pchitskaya, E., Zakharova, O., Saito, T., Saido, T., & Bezprozvanny, I. (2015b). Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease. Journal of Neuroscience, 35(39), 13275–13286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, S., Studer, D., Chai, X., Graber, W., Brose, N., Nestel, S., et al. (2012). Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing. Journal of Comparative Neurology, 520(11), 2340–2351.

    Article  PubMed  Google Scholar 

  • Zhao, H. M., Wenthold, R. J., & Petralia, R. S. (1998). Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. Journal of Neuroscience, 18(14), 5517–5528.

    CAS  PubMed  Google Scholar 

  • Zheng, C. Y., Seabold, G. K., Horak, M., & Petralia, R. S. (2011). MAGUKs, synaptic development, and synaptic plasticity. Neuroscientist, 17(5), 493–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Programs of NIDCD/NIH and NIA/NIH. The code for the Advanced Imaging Core of NIDCD is ZIC DC000081-03. We thank Megan Wyeth for helpful discussion about hippocampal CA3 mossy terminal synapse function and inhibitory interneurons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Petralia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petralia, R.S., Wang, YX., Mattson, M.P. et al. The Diversity of Spine Synapses in Animals. Neuromol Med 18, 497–539 (2016). https://doi.org/10.1007/s12017-016-8405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8405-y

Keywords

Navigation