Skip to main content

Advertisement

Log in

Osteocytes: Mechanosensors of Bone and Orchestrators of Mechanical Adaptation

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Significant progress has been made in the field of mechanotransduction in bone cells. The knowledge about the role of osteocytes as the professional mechanosensor cells of bone as well as the lacuno-canalicular porosity as the structure that mediates mechanosensing is increasing. New insights might result in a paradigm for understanding the bone formation response to mechanical loading, and the bone resorption response to disuse. Under physiological loading conditions the strain-derived flow of interstitial fluid through the lacuno-canalicular porosity seems to mechanically activate the osteocytes, which subsequently alter the bone remodeling activity of osteoblasts and/or osteoclasts. Fatigue loading results in local microdamage, disruption of normal flow patterns, and osteocyte apoptosis. Apoptotic osteocytes likely attract osteoclasts to resorb the damaged bone. This concept allows explanation of local bone gain and loss, as well as remodeling in response to fatigue damage, as processes supervised by mechanosensitive osteocytes. Uncovering the cellular and mechanical basis of the osteocyte’s response to loading would greatly contribute to our understanding of the cellular basis for bone remodeling, and could contribute to the discovery of new treatment modalities for bone mass disorders, such as osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolff JD. Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald; 1892.

    Google Scholar 

  2. Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomed Eng. 1991;113:191–7.

    CAS  Google Scholar 

  3. Mullender MG, Huiskes R. Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res. 1995;13:503–12.

    Article  PubMed  CAS  Google Scholar 

  4. Mullender MG, Huiskes R. Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone. 1997;20:527–32.

    Article  PubMed  CAS  Google Scholar 

  5. Klein-Nulend J, Van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995;9:441–5.

    PubMed  CAS  Google Scholar 

  6. Parfitt AM. The cellular basis of bone turnover and bone loss. Clin Orthop Rel Res. 1977;127:236–47.

    Google Scholar 

  7. Vatsa A, Smit TH, Klein-Nulend J. Extracellular NO signalling from a mechanically stimulated osteocyte. J Biomech. 2007;40:S89–95.

    Article  PubMed  Google Scholar 

  8. Skerry TM, Bitensky L, Chayen J, Lanyon LE. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res. 1989;4:783–8.

    PubMed  CAS  Google Scholar 

  9. El-Haj AJ, Minter SL, Rawlinson SCF, Suswillo R, Lanyon LE. Cellular responses to mechanical loading in vitro. J Bone Miner Res. 1990;5:923–32.

    PubMed  CAS  Google Scholar 

  10. Dallas SL, Zaman G, Pead MJ, Lanyon LE. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J Bone Miner Res. 1993;8:251–9.

    PubMed  CAS  Google Scholar 

  11. Lean JM, Jagger CJ, Chambers TJ, Chow JW. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Physiol. 1995;268:E318–27.

    PubMed  CAS  Google Scholar 

  12. Forwood MR, Kelly WL, Worth NF. Localization of prostaglandin endoperoxidase H synthase (PGHS)-1 and PGHS-2 in bone following mechanical loading in vivo. Anat Rec. 1998;252:580–6.

    Article  PubMed  CAS  Google Scholar 

  13. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S. Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res. 1999;14:839–49.

    Article  PubMed  CAS  Google Scholar 

  14. McGarry JG, Klein-Nulend J, Prendergast PJ. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun. 2005;330:341–8.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka-Kamioka K, Kamioka H, Ris H, Lim SS. Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res. 1998;13:1555–68.

    Article  PubMed  CAS  Google Scholar 

  16. Aarden EM, Wassenaar AM, Alblas MJ, Nijweide PJ. Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem Cell Biol. 1996;106:495–501.

    Article  PubMed  CAS  Google Scholar 

  17. Westbroek I, De Rooij KE, Nijweide PJ. Osteocyte-specific monoclonal antibody MAb OB7.3 is directed against Phex protein. J Bone Miner Res. 2002;17:845–53.

    Article  PubMed  CAS  Google Scholar 

  18. Van der Plas A, Nijweide PJ. Isolation and purification of osteocytes. J Bone Miner Res. 1992;7:389–96.

    PubMed  Google Scholar 

  19. Van der Plas A, Aarden EM, Feyen JHM, de Boer AH, Wiltink A, Alblas MJ, de Ley L, Nijweide PJ. Characteristics and properties of osteocytes in culture. J Bone Miner Res. 1994;9:1697–704.

    PubMed  Google Scholar 

  20. Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem. 2003;278:1998–2007.

    Article  PubMed  CAS  Google Scholar 

  21. Gluhak-Heinrich J, Yang W, Bonewald L, Robling AG, Turner CH, Harris SE. Mechanically induced DMP1 and MEPE expression in osteocytes: correlation to mechanical strain, osteogenic response and gene expression threshold. J Bone Miner Res. 2005;20(Suppl 1):S73.

    Google Scholar 

  22. Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T. Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res. 2001;16:2017–26.

    Article  PubMed  CAS  Google Scholar 

  23. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.

    Article  PubMed  CAS  Google Scholar 

  24. Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, Pavlin D. Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res. 2003;18:807–17.

    Article  PubMed  CAS  Google Scholar 

  25. Harris SE, Gluhak-Heinrich J, Harris MA, Yang W, Bonewald LF, Riha D, Rove PSN, Robling AG, Turner CH, Feng JQ, McKee MD, Nicolella D. DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: theoretical role in controlling mineral quality in the perilacunar matrix. J Musculoskelet Neuronal Interact. 2007;7:313–5.

    PubMed  CAS  Google Scholar 

  26. Schulze E, Witt M, Kasper M, Löwik CW, Funk RH. Immunohistochemical investigations on the differentiation marker protein E11 in rat calvaria, calvaria cell culture and the osteoblastic cell line ROS 17/2.8. Histochem. Cell Biol. 1999;111:61–9.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol. 2006;26:4539–52.

    Article  PubMed  CAS  Google Scholar 

  28. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19:1842–4.

    PubMed  CAS  Google Scholar 

  29. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.

    Article  PubMed  CAS  Google Scholar 

  30. Van Bezooijen RL, Roelen BA, Visser A, Van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199:805–14.

    Article  PubMed  CAS  Google Scholar 

  31. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.

    Article  PubMed  CAS  Google Scholar 

  32. Robling AG, Bellido T, Turner CH. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact. 2006;6:354.

    PubMed  CAS  Google Scholar 

  33. Johnson LC. The kinetics of skeletal remodeling in structural organization of the skeleton. Birth Defects. 1966;11:66–142.

    Google Scholar 

  34. Bonucci E. The ultrastructure of the osteocyte. In: Bonucci E, Motta PM, editors. Ultrastructure of skeletal tissues. Dordrecht, The Netherlands: Kluwer Academic; 1990. p. 223–37.

    Google Scholar 

  35. Boyde A. Evidence against “osteocyte osteolysis.”. Metab Bone Dis Rel Res. 1980;2(Suppl):239–55.

    Google Scholar 

  36. Marotti G, Cane V, Palazzini S, Palumbo C. Structure-function relationships in the osteocyte. Ital J Min Electrolyte Metab. 1990;4:93–106.

    Google Scholar 

  37. Ruchon AF, Tenenhouse HS, Marcinkiewicz M, Siegfried G, Aubin JE, DesGroseillers L, Crine P, Boileau G. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000;15:1440–50.

    Article  PubMed  CAS  Google Scholar 

  38. Oster G. Cell motility and tissue morphogenesis. In: Stein WD, Bronner F, editors. Cell shape: determinants, regulation and regulatory role. San Diego, CA: Academic Press. 1989. p. 33–61.

    Google Scholar 

  39. Pienkowski D, Pollack SR. The origin of stress-generated potentials in fluid-saturated bone. J Orthop Res. 1983;1:30–41.

    Article  PubMed  CAS  Google Scholar 

  40. Rubin CT. Skeletal strain and the functional significance of bone architecture. Calcif Tissue Int. 1984;36:S11–8.

    Article  PubMed  Google Scholar 

  41. Burr DB, Milgran C, Fyhrie D, Forwood MR, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996;18:405–10.

    Article  PubMed  CAS  Google Scholar 

  42. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J. Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone. (in press).

  43. Vatsa A, Semeins CM, Smit TH, Klein-Nulend J. Paxillin localisation in osteocytes—is it determined by the direction of loading? Biochem Biophys Res Commun. 2008; Jan 7 [Epub ahead of print].

  44. McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ. A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. FASEB J. 2005;19:482–4.

    PubMed  CAS  Google Scholar 

  45. Cowin SC, Weinbaum S, Zeng Y. A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech. 1995;28:1281–97.

    Article  PubMed  CAS  Google Scholar 

  46. Cowin SC. Bone poroelasticity. J Biomech. 1999;32:217–38.

    Article  PubMed  CAS  Google Scholar 

  47. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27:339–60.

    Article  PubMed  CAS  Google Scholar 

  48. Knothe-Tate ML, Steck R, Forwood MR, Niederer P. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J Exp Biol. 2000;203:2737–45.

    PubMed  CAS  Google Scholar 

  49. Burger EH, Klein-Nulend J. Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB J. 1999;13:S101–12.

    PubMed  CAS  Google Scholar 

  50. You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loadinginduced oscillating fluid flow. J Biomech Engin. 2000;122:387–93.

    Article  CAS  Google Scholar 

  51. Piekarski K, Munro M. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 1977;269:80–2.

    Article  PubMed  CAS  Google Scholar 

  52. Knothe Tate ML, Knothe U, Niederer P. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am J Med Sci. 1998;316:189–95.

    Article  PubMed  CAS  Google Scholar 

  53. Pollack SR, Petrov N, Salzstein R, Brankov G, Blagoeva R. An anatomical model for streaming potentials in osteons. J Biomech. 1984;17:627–36.

    Article  PubMed  CAS  Google Scholar 

  54. Salzstein RA, Pollack SR. Electromechanical potentials in cortical bone. II. Experimental analysis. J Biomech. 1987;20:271–80.

    Article  PubMed  CAS  Google Scholar 

  55. Hung CT, Pollack SR, Reilly TM, Brighton CT. Realtime calcium response of cultured bone cells to fluid flow. Clin Orthop Rel Res. 1995;313:256–69.

    Google Scholar 

  56. Hung CT, Allen FD, Pollack SR, Brighton CT. Intracellular calcium stores and extracellular calcium are required in the real-time calcium response of bone cells experiencing fluid flow. J Biomech. 1996;29:1411–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hung CT, Allen FD, Pollack SR, Brighton CT. What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech. 1996;29:1403–9.

    Article  PubMed  CAS  Google Scholar 

  58. Wang N, Ingber DE. Control of cytoskeletal mechanisms by extracellular matrix, cell shape and mechanical tension. Biophys J. 1994;66:2181–9.

    Article  PubMed  CAS  Google Scholar 

  59. Sachs F. Ion channels as mechanical transducers. In: Stein WD, Bronner F, editors. Cell shape: determinants, regulation and regulatory role. San Diego, CA: Academic Press. 1989. p. 63–94.

    Google Scholar 

  60. Ingber DE. Intergrins as mechanochemical transducers. Curr Opin Cell Biol. 1991;3:841–8.

    Article  PubMed  CAS  Google Scholar 

  61. Bakker AD, Soejima K, Klein-Nulend J, Burger EH. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech. 2001;34:671–7.

    Article  PubMed  CAS  Google Scholar 

  62. Kamiya A, Ando J. Response of vascular endothelial cells to fluid shear stress: mechanism. In: Hayashi K, Kamiyn A, Ono K, editors. Biomechanics: functional adaptation and remodeling. Tokyo: Springer; 1996. p. 29–56.

    Google Scholar 

  63. Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227:1477–9.

    Article  PubMed  CAS  Google Scholar 

  64. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation. Biochem Biophys Res Commun. 1995;217:640–8.

    Article  PubMed  CAS  Google Scholar 

  65. Ajubi NE, Klein-Nulend J, Nijweide PJ, Vrijheid-Lammers T, Alblas MJ, Burger EH. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem Biophys Res Commun. 1996;225:62–8.

    Article  PubMed  CAS  Google Scholar 

  66. Westbroek I, Ajubi NE, Alblas MJ, Semeins CM, Klein-Nulend J, Burger EH, Nijweide PJ. Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun. 2000;268:414–9.

    Article  PubMed  CAS  Google Scholar 

  67. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124–7.

    Article  PubMed  CAS  Google Scholar 

  68. Watson PA. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991;5:2013–9.

    PubMed  CAS  Google Scholar 

  69. Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ. Signal transduction pathways involved in fluid flow-induced prostaglandin E2 production by cultured osteocytes. Am J Physiol. 1999;276:E171–8.

    PubMed  CAS  Google Scholar 

  70. Pavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeletonintegrin interactions. Am J Physiol. 1998;275:C1591–601.

    PubMed  CAS  Google Scholar 

  71. Aarden EM, Nijweide PJ, Van der Plas A, Alblas MJ, Mackie EJ, Horton MA, Helfrich MH. Adhesive properties of isolated chick osteocytes in vitro. Bone. 1996;18:305–13.

    Article  PubMed  CAS  Google Scholar 

  72. Hughes DE, Salter DM, Simpson R. CD44 expression in human bone: a novel marker of osteocytic differentiation. J Bone Miner Res. 1994;9:39–44.

    PubMed  CAS  Google Scholar 

  73. Nakamura H, Ozawa H. Immunolocalization of CD44 and the ERM family in bone cells of mouse tibiae. J Bone Miner Res. 1996;11:1715–22.

    PubMed  CAS  Google Scholar 

  74. Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun. 2004;315:823–9.

    Article  PubMed  CAS  Google Scholar 

  75. Bacabac RG, Smit TH, Van Loon JJWA, Zandieh Doulabi B, Helder MN, Klein-Nulend J. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 2006;20:858–64.

    Article  PubMed  CAS  Google Scholar 

  76. Mullender MG, Dijcks SJ, Bacabac RG, Semeins CM, Van Loon JJWA, Klein-Nulend J. Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res. 2006;24:1170–7.

    Article  PubMed  CAS  Google Scholar 

  77. Bacabac RG, Smit TH, Mullender MG, Van Loon JJWA, Klein-Nulend J. Initial stress-kick is required for fluid shear stress-induced rate dependent activation of bone cells. Ann Biomed Eng. 2005;33:104–10.

    Article  PubMed  Google Scholar 

  78. Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Smit TH, Van Loon JJWA, Klein-Nulend J. Microrheology and force traction of mechanosensitive bone cells. J Biomech. 2006;39(Suppl 1):S231–2.

    Article  Google Scholar 

  79. Vatsa A, Mizuno D, Smit TH, Schmidt CF, MacKintosh FC, Klein-Nulend J. Bio imaging of intracellular NO production in single bone cells after mechanical stimulation. J Bone Miner Res. 2006;21:1722–8.

    Article  PubMed  CAS  Google Scholar 

  80. Bacabac RG, Mizuno D, Schmidt CF, MacKintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH. Bone cell morphology, elasticity, and mechanosensing. J Biomech. 2008; Apr 8 [Epub ahead of print].

  81. Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald LF, Quarles LD. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281:30884–95.

    Article  PubMed  CAS  Google Scholar 

  82. Malone AMD, Anderson CT, Temiyasathit S, Tang J, Tummala P, Sterns T, Jacobs CR. Primary Cilia: Mechanosensory Organelles in bone cells. J Bone Miner Res. 2006;21(Suppl 1):S39.

    Google Scholar 

  83. Doty SB. Morphological evidence of gap junctions between bone cells. Calcif Tissue Int. 1981;33:509–12.

    Article  PubMed  CAS  Google Scholar 

  84. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem 1996;65:475–502.

    Article  PubMed  CAS  Google Scholar 

  85. Bennett MV, Goodenough DA. Gap junctions, electrotonic coupling, and intercellular communication. Neurosci Res Program Bull. 1978;16:1–486.

    PubMed  CAS  Google Scholar 

  86. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151:931–44.

    Article  PubMed  CAS  Google Scholar 

  87. Saunders MM, You J, Trosko JE, Yamasaki H, Li Z, Donahue HJ, Jacobs CR. Gap junctions and fluid flow response in MC3T3–E1 cells. Am J Physiol Cell Physiol. 2001;281:C1917–25.

    PubMed  CAS  Google Scholar 

  88. Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res. 2001;16:249–59.

    Article  PubMed  CAS  Google Scholar 

  89. Alford AI, Jacobs CR, Donahue HJ. Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism small star, filled. Bone. 2003;33:64–70.

    Article  PubMed  CAS  Google Scholar 

  90. Kato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12:2014–23.

    Article  PubMed  CAS  Google Scholar 

  91. Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4:285–94.

    Article  PubMed  CAS  Google Scholar 

  92. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces atp release from MLO-Y4 osteocytes. J Cell Physiol. Published online 2007 Feb 14 [Epub ahead of print].

  93. Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem. 2002;277:8648–57.

    Article  PubMed  CAS  Google Scholar 

  94. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16:3100–6.

    Article  PubMed  CAS  Google Scholar 

  95. Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA. 2004;101:16689–94.

    Article  PubMed  CAS  Google Scholar 

  96. Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA. 2007;104:15941–846.

    Article  PubMed  CAS  Google Scholar 

  97. Veno P, Nicolella DP, Sivakumar P, Kalajzic I, Rowe D, Harris SE, Bonewald LF, Dallas SL. Live imaging of osteocytes within their lacunae reveals cell body and dendrite motions. J Bone Min Res. 2006;21(Suppl 1):S38.

    Google Scholar 

  98. Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Qiu J, Duncan RL. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol. 2000;278:C989–97.

    CAS  Google Scholar 

  99. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res. 1997;12:45–51.

    Article  PubMed  CAS  Google Scholar 

  100. Joldersma M, Burger EH, Semeins CM, Klein-Nulend J. Mechanical stress induces COX-2 mRNA expression in bone cells from elderly women. J Biomech. 2000;33:53–61.

    Article  PubMed  CAS  Google Scholar 

  101. Forwood MR. Inducible cyclooxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res. 1996;11:1688–93.

    Article  PubMed  CAS  Google Scholar 

  102. Pitsillides AA, Rawlinson SCF, Suswillo RFL, Bourrin S, Zaman G, Lanyon LE. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 1995;9:1614–22.

    PubMed  CAS  Google Scholar 

  103. Sterck JGH, Klein-Nulend J, Lips P, Burger EH. Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol. 1998;274:E1113–20.

    PubMed  CAS  Google Scholar 

  104. Turner CH, Takano Y, Owan I, Murrell GA. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol. 1996;270:E639–43.

    Google Scholar 

  105. Fox SW, Chambers TJ, Chow JWM. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol. 1996;270:E955–60.

    PubMed  CAS  Google Scholar 

  106. Koprowski H, Maeda H. The role of nitric oxide in physiology and pathophysiology. Berlin, Germany: Springer-Verlag; 1995.

    Google Scholar 

  107. Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH. Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res. 1997;12:1108–15.

    Article  PubMed  CAS  Google Scholar 

  108. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res. 1999;14:1123–31.

    Article  PubMed  CAS  Google Scholar 

  109. Klein-Nulend J, Helfrich MH, Sterck JGH, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun. 1998;250:108–14.

    Article  PubMed  CAS  Google Scholar 

  110. Caballero-Alias AM, Loveridge N, Lyon A, Das-Gupta V, Pitsillides A, Reeve J. NOS isoforms in adult human osteocytes: multiple pathways of NO regulation? Calcif Tissue Int. 2004;75:78–84.

    Article  PubMed  CAS  Google Scholar 

  111. Busse R, Fleming I. Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium derived relaxing factors. J Vascul Res. 1998;35:73–84.

    Article  CAS  Google Scholar 

  112. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG. Regulation of endothelial nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995;269:C1371–8.

    PubMed  CAS  Google Scholar 

  113. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  PubMed  CAS  Google Scholar 

  114. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;382:225–30.

    Article  PubMed  CAS  Google Scholar 

  115. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407:530–5.

    Article  PubMed  CAS  Google Scholar 

  116. Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature. 1997;390:410–3.

    Article  PubMed  CAS  Google Scholar 

  117. Habas R, Dawid IB, He X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 2003;17:295–309.

    Article  PubMed  CAS  Google Scholar 

  118. Johnson ML, Harnish K, Nusse R, Van Hul W. LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res. 2004;19:1749–57.

    Article  PubMed  CAS  Google Scholar 

  119. Lories RJ, Peeters J, Bakker AD, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum. 2007;56:3881–3.

    Article  CAS  Google Scholar 

  120. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem. 2006;281:31720–8.

    Article  PubMed  CAS  Google Scholar 

  121. Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J. Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. Transactions of the 54th Annual Meeting, Orthopaedic Research Society, vol 33, abstract, 2008.

  122. Vezeridis PS, Semeins CM, Chen Q, Klein-Nulend J. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun. 2005;348:1082–88.

    Article  CAS  Google Scholar 

  123. Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone. 2007;41:745–51.

    Article  PubMed  CAS  Google Scholar 

  124. Mishra S, Knothe-Tate ML. Effect of lacunocanalicular architecture on hydraulic conductance in bone tissue: implications for bone health and evolution. Anat Rec A Discov Mol Cell Evol Biol. 2003;273:752–62.

    Article  PubMed  Google Scholar 

  125. Tami AE, Nasser P, Verborgt O, Schaffler MB, Knothe Tate ML. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res. 2002;17:2030–7.

    Article  PubMed  CAS  Google Scholar 

  126. Burger EH, Klein-Nulend J, Smit TH. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon—a proposal. J Biomech. 2003;36:1453–9.

    Article  PubMed  Google Scholar 

  127. Smit TH, Burger EH, Huyghe JM. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. J Bone Miner Res. 2002;17:2021–2029.

    Article  PubMed  Google Scholar 

  128. Bakker AD, Klein-Nulend J, Burger EH. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun. 2004;320:1163–8.

    Article  PubMed  CAS  Google Scholar 

  129. Tan SD, Kuijpers-Jagtman AM, Semeins CM, Bronckers ALJJ, Maltha JC, Von den Hoff JW, Everts V, Klein-Nulend J. Fluid shear stress inhibits TNFalpha-induced osteocyte apoptosis. J Dent Res. 2006;85:905–9.

    PubMed  CAS  Google Scholar 

  130. Basso N, Heersche JNM. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone. 2006;39:807–14.

    Article  PubMed  CAS  Google Scholar 

  131. Lanyon LE. Functional strain as a determinant for bone remodeling. Calcif Tissue Int. 1984;36(Suppl 1):S56–61.

    Article  PubMed  Google Scholar 

  132. McCreadie BR, Hollister SJ, Schaffler MB, Goldstein SA. Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J Biomech. 2004;37:563–72.

    Article  PubMed  Google Scholar 

  133. Bakker AD, Klein-Nulend J, Tanck E, Heyligers IC, Albers GH, Lips P, Burger EH. Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos Int. 2006;17:827–33.

    Article  PubMed  CAS  Google Scholar 

  134. Bakker AD, Klein-Nulend J, Tanck E, Albers GH, Lips P, Burger EH. Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int. 2005;16:983–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenneke Klein-Nulend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein-Nulend, J., Bakker, A.D. Osteocytes: Mechanosensors of Bone and Orchestrators of Mechanical Adaptation. Clinic Rev Bone Miner Metab 5, 195–209 (2007). https://doi.org/10.1007/s12018-008-9014-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-008-9014-6

Keywords

Navigation