Skip to main content
Erschienen in: Neuroinformatics 1/2009

01.03.2009

PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data

verfasst von: Michael Hanke, Yaroslav O. Halchenko, Per B. Sederberg, Stephen José Hanson, James V. Haxby, Stefan Pollmann

Erschienen in: Neuroinformatics | Ausgabe 1/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python’s ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the literature, authors have referred to the application of machine learning techniques to neural data as decoding (Kamitani and Tong 2005; Haynes et al. 2007), information-based analysis (e.g. Kriegeskorte et al. 2006) or multi-voxel pattern analysis (e.g. Norman et al. 2006). Throughout this article we will use the term classifier-based analysis to refer to all these methods.
 
2
Neural Information Processing Systems http://​nips.​cc/​
 
13
ANALYZE format is supported as well but it is inferior to NIfTI thus is not explicitly advertised here.
 
20
Given that the results reported are from a single participant, we are simply illustrating the capabilities of PyMVPA, not trying to promote any analysis method as more-effective than another.
 
21
Note that PyMVPA internally makes use of a number of other aforementioned Python modules, such as NumPy and SciPy.
 
22
To a certain degree PyMVPA also supports importing ANALYZE files.
 
23
LIBSVM C-SVC (Chang and Lin 2001) with trade-off parameter C being a reciprocal of the squared mean of Frobenius norms of the data samples.
 
24
Chance performance without feature selection was not the norm for all category pairs in the dataset. For example, the SVM classifier generalized well for other pairs of categories (e.g. FACE vs HOUSE) without prior feature selection. Consequently, SCISSORS vs CATS was chosen to provide a more difficult analysis case.
 
26
Nothing prevents a software developer from adding a GUI to the toolbox using one of the many GUI toolkits that interface with Python code, such as PyQT (http://​www.​riverbankcomputi​ng.​co.​uk/​software/​pyqt/​) or wxPython (http://​www.​wxpython.​org/​).
 
Literatur
Zurück zum Zitat Chen, X., Pereira, F., Lee, W., Strother, S., & Mitchell, T. (2006). Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Human Brain Mapping 27, 452–461.PubMedCrossRef Chen, X., Pereira, F., Lee, W., Strother, S., & Mitchell, T. (2006). Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Human Brain Mapping 27, 452–461.PubMedCrossRef
Zurück zum Zitat Detre, G., Polyn, S. M., Moore, C., Natu, V., Singer, B., Cohen, J., et al. (2006). The multi-voxel pattern analysis (MVPA) toolbox. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy). Detre, G., Polyn, S. M., Moore, C., Natu, V., Singer, B., Cohen, J., et al. (2006). The multi-voxel pattern analysis (MVPA) toolbox. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping (Florence, Italy).
Zurück zum Zitat Efron, B., & Tibshirani, R. (1993). An introduction to the Bootstrap. Boca Raton: Chapman & Hall/CRC. Efron, B., & Tibshirani, R. (1993). An introduction to the Bootstrap. Boca Raton: Chapman & Hall/CRC.
Zurück zum Zitat Efron, B., Trevor, H., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407–499.CrossRef Efron, B., Trevor, H., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407–499.CrossRef
Zurück zum Zitat Guimaraes, M. P., Wong, D. K., Uy, E. T., Grosenick, L., & Suppes, P. (2007). Single-trial classification of MEG recordings. IEEE Transactions on Biomedical Engineering, 54, 436–443.PubMedCrossRef Guimaraes, M. P., Wong, D. K., Uy, E. T., Grosenick, L., & Suppes, P. (2007). Single-trial classification of MEG recordings. IEEE Transactions on Biomedical Engineering, 54, 436–443.PubMedCrossRef
Zurück zum Zitat Guyon, I., & Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of Machine Learning 3, 1157–1182.CrossRef Guyon, I., & Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of Machine Learning 3, 1157–1182.CrossRef
Zurück zum Zitat Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.CrossRef Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.CrossRef
Zurück zum Zitat Hanson, S., Matsuka, T., & Haxby, J. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? Neuroimage, 23, 156–166.PubMedCrossRef Hanson, S., Matsuka, T., & Haxby, J. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? Neuroimage, 23, 156–166.PubMedCrossRef
Zurück zum Zitat Hanson, S. J., & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: There is no “face” identification area. Neural Computation, 20, 486–503.PubMedCrossRef Hanson, S. J., & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: There is no “face” identification area. Neural Computation, 20, 486–503.PubMedCrossRef
Zurück zum Zitat Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.PubMedCrossRef Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.PubMedCrossRef
Zurück zum Zitat Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary cortex. Nature Neuroscience, 8, 686–691.PubMedCrossRef Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary cortex. Nature Neuroscience, 8, 686–691.PubMedCrossRef
Zurück zum Zitat Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.PubMedCrossRef Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.PubMedCrossRef
Zurück zum Zitat Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R. E. (2007). Reading hidden intentions in the human brain. Current Biology, 17, 323–328.PubMedCrossRef Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S., Frith, C., & Passingham, R. E. (2007). Reading hidden intentions in the human brain. Current Biology, 17, 323–328.PubMedCrossRef
Zurück zum Zitat Jenkinson, M., Bannister, P., Brady, J., & Smith, S. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841.PubMedCrossRef Jenkinson, M., Bannister, P., Brady, J., & Smith, S. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841.PubMedCrossRef
Zurück zum Zitat Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8, 679–685.PubMedCrossRef Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8, 679–685.PubMedCrossRef
Zurück zum Zitat Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 20600–20605.PubMedCrossRef Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 20600–20605.PubMedCrossRef
Zurück zum Zitat Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCrossRef Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 3863–3868.PubMedCrossRef
Zurück zum Zitat Krishnapuram, B., Carin, L., Figueiredo, M. A., & Hartemink, A. J. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957–968.PubMedCrossRef Krishnapuram, B., Carin, L., Figueiredo, M. A., & Hartemink, A. J. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957–968.PubMedCrossRef
Zurück zum Zitat LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. Neuroimage, 26, 317–329.PubMedCrossRef LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. Neuroimage, 26, 317–329.PubMedCrossRef
Zurück zum Zitat Millman, K., & Brett, M. (2007). Analysis of functional magnetic resonance imaging in python. Computing in Science & Engineering, 9, 52–55.CrossRef Millman, K., & Brett, M. (2007). Analysis of functional magnetic resonance imaging in python. Computing in Science & Engineering, 9, 52–55.CrossRef
Zurück zum Zitat Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.CrossRef Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.CrossRef
Zurück zum Zitat Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fmri data. Trends in Cognitive Science, 10, 424–430.CrossRef Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fmri data. Trends in Cognitive Science, 10, 424–430.CrossRef
Zurück zum Zitat O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17, 580–590.PubMedCrossRef O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17, 580–590.PubMedCrossRef
Zurück zum Zitat O’Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19, 1735–1752.PubMedCrossRef O’Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19, 1735–1752.PubMedCrossRef
Zurück zum Zitat Perez, F., & Granger, B. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9, 21–29.CrossRef Perez, F., & Granger, B. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9, 21–29.CrossRef
Zurück zum Zitat Pessoa, L., & Padmala, S. (2007). Decoding near-threshold perception of fear from distributed single-trial brain activation. Cerebral Cortex, 17, 691–701.PubMedCrossRef Pessoa, L., & Padmala, S. (2007). Decoding near-threshold perception of fear from distributed single-trial brain activation. Cerebral Cortex, 17, 691–701.PubMedCrossRef
Zurück zum Zitat Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3, 1357–1370.CrossRef Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3, 1357–1370.CrossRef
Zurück zum Zitat Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In Denison, D. D., Hansen, M. H., Holmes, C., Mallick, B., & Yu, B. (Eds.), Nonlinear estimation and classification. New York: Springer. Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In Denison, D. D., Hansen, M. H., Holmes, C., Mallick, B., & Yu, B. (Eds.), Nonlinear estimation and classification. New York: Springer.
Zurück zum Zitat Sonnenburg, S., Braun, M., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., et al. (2007). The need for open source software in machine learning. Journal of Machine Learning Research, 8, 2443–2466. Sonnenburg, S., Braun, M., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., et al. (2007). The need for open source software in machine learning. Journal of Machine Learning Research, 8, 2443–2466.
Zurück zum Zitat Sonnenburg, S., Raetsch, G., Schaefer, C., & Schoelkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531–1565. Sonnenburg, S., Raetsch, G., Schaefer, C., & Schoelkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531–1565.
Zurück zum Zitat Thulasidas, M., Guan, C., & Wu, J. (2006). Robust classification of EEG signal for brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 24–29.PubMedCrossRef Thulasidas, M., Guan, C., & Wu, J. (2006). Robust classification of EEG signal for brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 24–29.PubMedCrossRef
Zurück zum Zitat Vanduffel, W., Tootell, R. B. H., Schoups, A. A., & Orban, G. A. (2002). The organization of orientation selectivity throughout macaque visual cortex. Cerebral Cortex, 12, 647–662.PubMedCrossRef Vanduffel, W., Tootell, R. B. H., Schoups, A. A., & Orban, G. A. (2002). The organization of orientation selectivity throughout macaque visual cortex. Cerebral Cortex, 12, 647–662.PubMedCrossRef
Zurück zum Zitat Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer. Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Metadaten
Titel
PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data
verfasst von
Michael Hanke
Yaroslav O. Halchenko
Per B. Sederberg
Stephen José Hanson
James V. Haxby
Stefan Pollmann
Publikationsdatum
01.03.2009
Verlag
Humana Press Inc
Erschienen in
Neuroinformatics / Ausgabe 1/2009
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-008-9041-y

Weitere Artikel der Ausgabe 1/2009

Neuroinformatics 1/2009 Zur Ausgabe