Skip to main content
Erschienen in: Neuroinformatics 4/2011

01.12.2011 | Original Article

An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data

verfasst von: Brian B. Avants, Nicholas J. Tustison, Jue Wu, Philip A. Cook, James C. Gee

Erschienen in: Neuroinformatics | Ausgabe 4/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs (http://​www.​picsl.​upenn.​edu/​ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Atropos is one of the three Fates from Greek mythology characterized by her dreaded shears used to decide the destiny of each mortal. Also, consistent with the entomological motif of our ANTs, Acherontia atropos is a species of large moth known for the skull-like pattern visible on its thorax.
 
2
In the classic 3-tissue segmentation case, each voxel in the brain region is assigned a label of ‘cerebrospinal fluid (csf)’, ‘gray matter (gm)’, or ‘white matter (wm)’.
 
3
Using a more expansive definition of U(x),
$$ U(\mathbf{x}) = \sum\limits_{i = 1}^N \left( V_i(x_i) + \beta \sum\limits_{j \in \mathcal{N}_i} V_{ij}( x_i, x_j ) \right) $$
would permit casting the other prior terms inside the definition of U(x) in the form of the external field V i (x i ) but, for clarity purposes, we consider them separately.
 
4
Due to the lack of parameters in the non-parametric approach, it is not technically an EM algorithm (as described in Wells et al. (1996)). However, the same iterative maximization is applicable and is quite robust in practice as evidenced by the number of researchers employing non-parametric models (see the Introduction).
 
5
Consider N sites each with a possible K labels for a total of N K possible labeling configurations. For large K ≫ 3, exact optimization is even more intractable than for the traditional 3-tissue scenario.
 
7
A comprehensive evaluation of N4 reported in Tustison et al. (2010a) used the BrainWeb data set to compare performance with the original N3 algorithm (Sled et al. 1998).
 
Literatur
Zurück zum Zitat Aubert-Broche, B., Griffin, M., Pike, G. B., Evans, A. C., & Collins, D. L. (2006). Twenty new digital brain phantoms for creation of validation image data bases. IEEE Transactions on Medical Imaging, 25, 1410–1416.PubMedCrossRef Aubert-Broche, B., Griffin, M., Pike, G. B., Evans, A. C., & Collins, D. L. (2006). Twenty new digital brain phantoms for creation of validation image data bases. IEEE Transactions on Medical Imaging, 25, 1410–1416.PubMedCrossRef
Zurück zum Zitat Avants, B. B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., et al. (2010a). The optimal template effect in hippocampus studies of diseased populations. Neuroimage, 49, 2457–2466.PubMedCrossRef Avants, B. B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., et al. (2010a). The optimal template effect in hippocampus studies of diseased populations. Neuroimage, 49, 2457–2466.PubMedCrossRef
Zurück zum Zitat Avants, B., Klein, A., Tustison, N., Woo, J., & Gee, J. C. (2010b). Evaluation of open-access, automated brain extraction methods on multi-site multi-disorder data. In 16th annual meeting for the Organization of Human Brain Mapping. Avants, B., Klein, A., Tustison, N., Woo, J., & Gee, J. C. (2010b). Evaluation of open-access, automated brain extraction methods on multi-site multi-disorder data. In 16th annual meeting for the Organization of Human Brain Mapping.
Zurück zum Zitat Avants, B., Cook, P. A., McMillan, C., Grossman, M., Tustison, N. J., Zheng, Y., et al. (2010c). Sparse unbiased analysis of anatomical variance in longitudinal imaging. In Proceedings of the 13th international conference on medical image computing and computer-assisted intervention (MICCAI) (Vol. 13, pp. 324–331). Avants, B., Cook, P. A., McMillan, C., Grossman, M., Tustison, N. J., Zheng, Y., et al. (2010c). Sparse unbiased analysis of anatomical variance in longitudinal imaging. In Proceedings of the 13th international conference on medical image computing and computer-assisted intervention (MICCAI) (Vol. 13, pp. 324–331).
Zurück zum Zitat Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54, 2033–2044.PubMedCrossRef Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54, 2033–2044.PubMedCrossRef
Zurück zum Zitat Awate, S. P., Tasdizen, T., Foster, N., & Whitaker, R. T. (2006). Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification. Medical Image Analysis, 10, 726–739.PubMedCrossRef Awate, S. P., Tasdizen, T., Foster, N., & Whitaker, R. T. (2006). Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification. Medical Image Analysis, 10, 726–739.PubMedCrossRef
Zurück zum Zitat Balafar, M. A., Ramli, A. R., Saripan, M. I., & Mashohor, S. (2010). Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33, 261–274.CrossRef Balafar, M. A., Ramli, A. R., Saripan, M. I., & Mashohor, S. (2010). Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33, 261–274.CrossRef
Zurück zum Zitat Ballester, M. A. G., Zisserman, A. P., & Brady, M. (2002). Estimation of the partial volume effect in MRI. Medical Image Analysis, 6, 389–405.CrossRef Ballester, M. A. G., Zisserman, A. P., & Brady, M. (2002). Estimation of the partial volume effect in MRI. Medical Image Analysis, 6, 389–405.CrossRef
Zurück zum Zitat Battaglini, M., Smith, S. M., Brogi, S., & Stefano, N. D. (2008). Enhanced brain extraction improves the accuracy of brain atrophy estimation. Neuroimage, 40, 583–589.PubMedCrossRef Battaglini, M., Smith, S. M., Brogi, S., & Stefano, N. D. (2008). Enhanced brain extraction improves the accuracy of brain atrophy estimation. Neuroimage, 40, 583–589.PubMedCrossRef
Zurück zum Zitat Bazin, P. L., & Pham, D. L. (2007). Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging, 26, 487–496.PubMedCrossRef Bazin, P. L., & Pham, D. L. (2007). Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging, 26, 487–496.PubMedCrossRef
Zurück zum Zitat Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Royal Statistical Society B, 36, 192–236. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Royal Statistical Society B, 36, 192–236.
Zurück zum Zitat Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Royal Statistical Society, Series B, 48, 259–302. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Royal Statistical Society, Series B, 48, 259–302.
Zurück zum Zitat Bezdek, J. C., Hall, L. O., & Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20, 1033–1048.PubMedCrossRef Bezdek, J. C., Hall, L. O., & Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20, 1033–1048.PubMedCrossRef
Zurück zum Zitat Boyes, R. G., Gunter, J. L., Frost, C., Janke, A. L., Yeatman, T., Hill, D. L. G., et al. (2008). Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage, 39, 1752–1762.PubMedCrossRef Boyes, R. G., Gunter, J. L., Frost, C., Janke, A. L., Yeatman, T., Hill, D. L. G., et al. (2008). Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage, 39, 1752–1762.PubMedCrossRef
Zurück zum Zitat Boykov, Y. Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In Proc. eighth IEEE int. conf. computer vision ICCV 2001 (Vol. 1, pp. 105–112). Boykov, Y. Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In Proc. eighth IEEE int. conf. computer vision ICCV 2001 (Vol. 1, pp. 105–112).
Zurück zum Zitat Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis amd Machine Intelligence, 26, 1124–1137.CrossRef Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis amd Machine Intelligence, 26, 1124–1137.CrossRef
Zurück zum Zitat Chou, Y. Y., Leporã, N., Avedissian, C., Madsen, S. K., Parikshak, N., Hua, X., et al. (2009). Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls. Neuroimage, 46, 394–410.PubMedCrossRef Chou, Y. Y., Leporã, N., Avedissian, C., Madsen, S. K., Parikshak, N., Hua, X., et al. (2009). Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls. Neuroimage, 46, 394–410.PubMedCrossRef
Zurück zum Zitat Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., et al. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13, 343–368.PubMedCrossRef Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., et al. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13, 343–368.PubMedCrossRef
Zurück zum Zitat Cline, H. E., Lorensen, W. E., Kikinis, R., & Jolesz, F. (1990). Three-dimensional segmentation of MR images of the head using probability and connectivity. Journal of Computer Assisted Tomography, 14, 1037–1045.PubMedCrossRef Cline, H. E., Lorensen, W. E., Kikinis, R., & Jolesz, F. (1990). Three-dimensional segmentation of MR images of the head using probability and connectivity. Journal of Computer Assisted Tomography, 14, 1037–1045.PubMedCrossRef
Zurück zum Zitat Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J. P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24, 1548–1565.PubMedCrossRef Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J. P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24, 1548–1565.PubMedCrossRef
Zurück zum Zitat Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.PubMedCrossRef Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.PubMedCrossRef
Zurück zum Zitat de Boer, R., Vrooman, H. A., Ikram, M. A., Vernooij, M. W., Breteler, M. M. B., van der Lugt, A., et al. (2010). Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage, 51, 1047–1056.PubMedCrossRef de Boer, R., Vrooman, H. A., Ikram, M. A., Vernooij, M. W., Breteler, M. M. B., van der Lugt, A., et al. (2010). Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage, 51, 1047–1056.PubMedCrossRef
Zurück zum Zitat de Bresser, J., Portegies, M. P., Leemans, A., Biessels, G. J., Kappelle, L. J., & Viergever, M. A. (2011). A comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage, 54, 760–768.PubMedCrossRef de Bresser, J., Portegies, M. P., Leemans, A., Biessels, G. J., Kappelle, L. J., & Viergever, M. A. (2011). A comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage, 54, 760–768.PubMedCrossRef
Zurück zum Zitat Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood estimation from incomplete data using the EM algorithms. Journal of the Royal Statistical Society, 39, 1–38. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood estimation from incomplete data using the EM algorithms. Journal of the Royal Statistical Society, 39, 1–38.
Zurück zum Zitat Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53, 1–15.PubMedCrossRef Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53, 1–15.PubMedCrossRef
Zurück zum Zitat Duncan, J. S., Papademetris, X., Yang, J., Jackowski, M., Zeng, X., & Staib, L. H. (2004). Geometric strategies for neuroanatomic analysis from MRI. Neuroimage, 23(Suppl 1), S34–S45.CrossRef Duncan, J. S., Papademetris, X., Yang, J., Jackowski, M., Zeng, X., & Staib, L. H. (2004). Geometric strategies for neuroanatomic analysis from MRI. Neuroimage, 23(Suppl 1), S34–S45.CrossRef
Zurück zum Zitat Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195–207.PubMedCrossRef Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195–207.PubMedCrossRef
Zurück zum Zitat Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.PubMedCrossRef Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.PubMedCrossRef
Zurück zum Zitat Freeborough, P. A., & Fox, N. C. (1997). The boundary shift integral: An accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Transactions on Medical Imaging, 16, 623–629.PubMedCrossRef Freeborough, P. A., & Fox, N. C. (1997). The boundary shift integral: An accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Transactions on Medical Imaging, 16, 623–629.PubMedCrossRef
Zurück zum Zitat Freeborough, P. A., Fox, N. C., & Kitney, R. I. (1997). Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine, 53, 15–25.PubMedCrossRef Freeborough, P. A., Fox, N. C., & Kitney, R. I. (1997). Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine, 53, 15–25.PubMedCrossRef
Zurück zum Zitat Friston, K. J., Frith, C. D., Liddle, P. F., Dolan, R. J., Lammertsma, A. A., & Frackowiak, R. S. (1990). The relationship between global and local changes in PET scans. Journal of Cerebral Blood Flow and Metabolism, 10, 458–466.PubMedCrossRef Friston, K. J., Frith, C. D., Liddle, P. F., Dolan, R. J., Lammertsma, A. A., & Frackowiak, R. S. (1990). The relationship between global and local changes in PET scans. Journal of Cerebral Blood Flow and Metabolism, 10, 458–466.PubMedCrossRef
Zurück zum Zitat Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.CrossRef Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.CrossRef
Zurück zum Zitat Goualher, G. L., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., & Evans, A. C. (1999). Automated extraction and variability analysis of sulcal neuroanatomy. IEEE Transactions on Medical Imaging, 18, 206–217.PubMedCrossRef Goualher, G. L., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., & Evans, A. C. (1999). Automated extraction and variability analysis of sulcal neuroanatomy. IEEE Transactions on Medical Imaging, 18, 206–217.PubMedCrossRef
Zurück zum Zitat Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging, 25, 1233–1245.PubMedCrossRef Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging, 25, 1233–1245.PubMedCrossRef
Zurück zum Zitat Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., et al. (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping, 19, 224–247.PubMedCrossRef Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., et al. (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping, 19, 224–247.PubMedCrossRef
Zurück zum Zitat Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers, A. (2006). Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage, 33, 115–126.PubMedCrossRef Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers, A. (2006). Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage, 33, 115–126.PubMedCrossRef
Zurück zum Zitat Heckemann, R. A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J. V., Hammers, A., et al. (2010). Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage, 51, 221–227.PubMedCrossRef Heckemann, R. A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J. V., Hammers, A., et al. (2010). Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage, 51, 221–227.PubMedCrossRef
Zurück zum Zitat Held, K., Kops, E. R., Krause, B. J., Wells, W. M., Kikinis, R., & Müller-Gärtner, H. W. (1997). Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging, 16, 878–886.PubMedCrossRef Held, K., Kops, E. R., Krause, B. J., Wells, W. M., Kikinis, R., & Müller-Gärtner, H. W. (1997). Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging, 16, 878–886.PubMedCrossRef
Zurück zum Zitat Julin, P., Melin, T., Andersen, C., Isberg, B., Svensson, L., & Wahlund, L. O. (1997). Reliability of interactive three-dimensional brain volumetry using MP-RAGE magnetic resonance imaging. Psychiatry Research, 76, 41–49.PubMedCrossRef Julin, P., Melin, T., Andersen, C., Isberg, B., Svensson, L., & Wahlund, L. O. (1997). Reliability of interactive three-dimensional brain volumetry using MP-RAGE magnetic resonance imaging. Psychiatry Research, 76, 41–49.PubMedCrossRef
Zurück zum Zitat Kikinis, R., Shenton, M. E., Gerig, G., Martin, J., Anderson, M., Metcalf, D., et al. (1992). Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. Journal of Magnetic Resonance Imaging, 2, 619–629.PubMedCrossRef Kikinis, R., Shenton, M. E., Gerig, G., Martin, J., Anderson, M., Metcalf, D., et al. (1992). Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. Journal of Magnetic Resonance Imaging, 2, 619–629.PubMedCrossRef
Zurück zum Zitat Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., & Lundervold, A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Human Brain Mapping, 30, 1310–1327.PubMedCrossRef Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., & Lundervold, A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Human Brain Mapping, 30, 1310–1327.PubMedCrossRef
Zurück zum Zitat Klein, A., & Hirsch, J. (2005). Mindboggle: A scatterbrained approach to automate brain labeling. Neuroimage, 24, 261–280.PubMedCrossRef Klein, A., & Hirsch, J. (2005). Mindboggle: A scatterbrained approach to automate brain labeling. Neuroimage, 24, 261–280.PubMedCrossRef
Zurück zum Zitat Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999a). Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 885–896.PubMedCrossRef Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999a). Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 885–896.PubMedCrossRef
Zurück zum Zitat Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999b). Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 897–908.PubMedCrossRef Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999b). Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 897–908.PubMedCrossRef
Zurück zum Zitat Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (2003). A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging, 22, 105–119.PubMedCrossRef Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (2003). A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging, 22, 105–119.PubMedCrossRef
Zurück zum Zitat Li, S. Z. (2001). Markov random field modeling in computer vision. London: Springer. Li, S. Z. (2001). Markov random field modeling in computer vision. London: Springer.
Zurück zum Zitat Lim, K. O., & Pfefferbaum, A. (1989). Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. Journal of Computer Assisted Tomography, 13, 588–593.PubMedCrossRef Lim, K. O., & Pfefferbaum, A. (1989). Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. Journal of Computer Assisted Tomography, 13, 588–593.PubMedCrossRef
Zurück zum Zitat Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., & Fernandez-Bouzas, A. (2002). An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Transactions on Medical Imaging, 21, 934–945.PubMedCrossRef Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., & Fernandez-Bouzas, A. (2002). An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Transactions on Medical Imaging, 21, 934–945.PubMedCrossRef
Zurück zum Zitat Nakamura, K., & Fisher, E. (2009). Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage, 44, 769–776.PubMedCrossRef Nakamura, K., & Fisher, E. (2009). Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage, 44, 769–776.PubMedCrossRef
Zurück zum Zitat Noe, A., & Gee, J. C. (2001). Partial volume segmentation of cerebral MRI scans with mixture model clustering. In M. Insana, & R. Leahy (Eds.), Information processing in medical imaging. Lecture notes in computer science (Vol. 2082, pp. 423–430). Berlin: Springer.CrossRef Noe, A., & Gee, J. C. (2001). Partial volume segmentation of cerebral MRI scans with mixture model clustering. In M. Insana, & R. Leahy (Eds.), Information processing in medical imaging. Lecture notes in computer science (Vol. 2082, pp. 423–430). Berlin: Springer.CrossRef
Zurück zum Zitat Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26, 1277–1294.CrossRef Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26, 1277–1294.CrossRef
Zurück zum Zitat Pappas, T. N. (1992). An adaptive clustering algorithm for image segmentation. IEEE Transactions on Signal Processing, 40, 901–914.CrossRef Pappas, T. N. (1992). An adaptive clustering algorithm for image segmentation. IEEE Transactions on Signal Processing, 40, 901–914.CrossRef
Zurück zum Zitat Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–337.PubMedCrossRef Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–337.PubMedCrossRef
Zurück zum Zitat Pieper, S., Lorensen, B., Schroeder, W., & Kikinis, R. (2006). The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community. In Proceedings of the 3rd IEEE international symposium on biomedical imaging: From nano to macro (Vol. 1, pp. 698–701). Pieper, S., Lorensen, B., Schroeder, W., & Kikinis, R. (2006). The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community. In Proceedings of the 3rd IEEE international symposium on biomedical imaging: From nano to macro (Vol. 1, pp. 698–701).
Zurück zum Zitat Pohl, K. M., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R. W., Kikinis, R., et al. (2007). A hierarchical algorithm for MR brain image parcellation. IEEE Transactions on Medical Imaging, 26, 1201–1212.PubMedCrossRef Pohl, K. M., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R. W., Kikinis, R., et al. (2007). A hierarchical algorithm for MR brain image parcellation. IEEE Transactions on Medical Imaging, 26, 1201–1212.PubMedCrossRef
Zurück zum Zitat Pohl, K. M., Fisher, J., Grimson, W. E. L., Kikinis, R., & Wells, W. M. (2006). A Bayesian model for joint segmentation and registration. Neuroimage, 31, 228–239.PubMedCrossRef Pohl, K. M., Fisher, J., Grimson, W. E. L., Kikinis, R., & Wells, W. M. (2006). A Bayesian model for joint segmentation and registration. Neuroimage, 31, 228–239.PubMedCrossRef
Zurück zum Zitat Prastawa, M., Gilmore, J. H., Lin, W., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9, 457–466.PubMedCrossRef Prastawa, M., Gilmore, J. H., Lin, W., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9, 457–466.PubMedCrossRef
Zurück zum Zitat Ruan, S., Jaggi, C., Xue, J., Fadili, J., & Bloyet, D. (2000). Brain tissue classification of magnetic resonance images using partial volume modeling. IEEE Transactions on Medical Imaging, 19, 1179–1187.PubMedCrossRef Ruan, S., Jaggi, C., Xue, J., Fadili, J., & Bloyet, D. (2000). Brain tissue classification of magnetic resonance images using partial volume modeling. IEEE Transactions on Medical Imaging, 19, 1179–1187.PubMedCrossRef
Zurück zum Zitat Sanjay-Gopal, S., & Hebert, T. J. (1998). Bayesian pixel classification using spatially variant finite mixtures and the generalized em algorithm. IEEE Transactions on Image Processing, 7, 1014–1028.PubMedCrossRef Sanjay-Gopal, S., & Hebert, T. J. (1998). Bayesian pixel classification using spatially variant finite mixtures and the generalized em algorithm. IEEE Transactions on Image Processing, 7, 1014–1028.PubMedCrossRef
Zurück zum Zitat Sánchez-Benavides, G., Gómez-Ansón, B., Sainz, A., Vives, Y., Delfino, M., & Peña-Casanova, J. (2010). Manual validation of Freesurfer’s automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer disease subjects. Psychiatry Research, 181, 219–225.PubMedCrossRef Sánchez-Benavides, G., Gómez-Ansón, B., Sainz, A., Vives, Y., Delfino, M., & Peña-Casanova, J. (2010). Manual validation of Freesurfer’s automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer disease subjects. Psychiatry Research, 181, 219–225.PubMedCrossRef
Zurück zum Zitat Scherrer, B., Forbes, F., Garbay, C., & Dojat, M. (2009). Distributed local MRF models for tissue and structure brain segmentation. IEEE Transactions on Medical Imaging, 28, 1278–1295.PubMedCrossRef Scherrer, B., Forbes, F., Garbay, C., & Dojat, M. (2009). Distributed local MRF models for tissue and structure brain segmentation. IEEE Transactions on Medical Imaging, 28, 1278–1295.PubMedCrossRef
Zurück zum Zitat Shiee, N., Bazin, P. L., Ozturk, A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2010). A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage, 49, 1524–1535.PubMedCrossRef Shiee, N., Bazin, P. L., Ozturk, A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2010). A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage, 49, 1524–1535.PubMedCrossRef
Zurück zum Zitat Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRef Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRef
Zurück zum Zitat Smith, S. M., Rao, A., Stefano, N. D., Jenkinson, M., Schott, J. M., Matthews, P. M., et al. (2007). Longitudinal and cross-sectional analysis of atrophy in alzheimer’s disease: Cross-validation of BSI, SIENA and SIENAX. Neuroimage, 36, 1200–1206.PubMedCrossRef Smith, S. M., Rao, A., Stefano, N. D., Jenkinson, M., Schott, J. M., Matthews, P. M., et al. (2007). Longitudinal and cross-sectional analysis of atrophy in alzheimer’s disease: Cross-validation of BSI, SIENA and SIENAX. Neuroimage, 36, 1200–1206.PubMedCrossRef
Zurück zum Zitat Suri, J. S., Singh, S., & Reden, L. (2002). Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): A state-of-the-art review. Pattern Analysis & Applications, 5, 46–76. doi:10.1007/s100440200005.CrossRef Suri, J. S., Singh, S., & Reden, L. (2002). Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): A state-of-the-art review. Pattern Analysis & Applications, 5, 46–76. doi:10.​1007/​s100440200005.CrossRef
Zurück zum Zitat Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., et al. (2010a). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29, 1310–1320.PubMedCrossRef Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., et al. (2010a). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29, 1310–1320.PubMedCrossRef
Zurück zum Zitat Tustison, N., Avants, B., Altes, T., de Lange, E., Mugler, J., & Gee, J. (2010b). Automatic segmentation of ventilation defects in hyperpolarized 3He MRI. In Proceedings of the biomedical engineering society annual meeting. Tustison, N., Avants, B., Altes, T., de Lange, E., Mugler, J., & Gee, J. (2010b). Automatic segmentation of ventilation defects in hyperpolarized 3He MRI. In Proceedings of the biomedical engineering society annual meeting.
Zurück zum Zitat Tustison, N., Avants, B., Siqueira, M., & Gee, J. (2010c). Topological well-composedness and Glamorous Glue: A digital gluing algorithm for topologically constrained front propagation. IEEE Transactions on Image Processing, accepted. Tustison, N., Avants, B., Siqueira, M., & Gee, J. (2010c). Topological well-composedness and Glamorous Glue: A digital gluing algorithm for topologically constrained front propagation. IEEE Transactions on Image Processing, accepted.
Zurück zum Zitat Vannier, M. W., Butterfield, R. L., Jordan, D., Murphy, W. A., Levitt, R. G., & Gado, M. (1985). Multispectral analysis of magnetic resonance images. Radiology, 154, 221–224.PubMed Vannier, M. W., Butterfield, R. L., Jordan, D., Murphy, W. A., Levitt, R. G., & Gado, M. (1985). Multispectral analysis of magnetic resonance images. Radiology, 154, 221–224.PubMed
Zurück zum Zitat Viergever, M. A., Maintz, J. B., Niessen, W. J., Noordmans, H. J., Pluim, J. P., Stokking, R., et al. (2001). Registration, segmentation, and visualization of multimodal brain images. Computerized Medical Imaging and Graphics, 25, 147–151.PubMedCrossRef Viergever, M. A., Maintz, J. B., Niessen, W. J., Noordmans, H. J., Pluim, J. P., Stokking, R., et al. (2001). Registration, segmentation, and visualization of multimodal brain images. Computerized Medical Imaging and Graphics, 25, 147–151.PubMedCrossRef
Zurück zum Zitat Weisenfeld, N. I., & Warfield, S. K. (2009). Automatic segmentation of newborn brain MRI. Neuroimage, 47, 564–572.PubMedCrossRef Weisenfeld, N. I., & Warfield, S. K. (2009). Automatic segmentation of newborn brain MRI. Neuroimage, 47, 564–572.PubMedCrossRef
Zurück zum Zitat Wells, W. M., Grimson, W. L., Kikinis, R., & Jolesz, F. A. (1996). Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15, 429–442.PubMedCrossRef Wells, W. M., Grimson, W. L., Kikinis, R., & Jolesz, F. A. (1996). Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15, 429–442.PubMedCrossRef
Zurück zum Zitat Westlye, L. T., Walhovd, K. B., Dale, A. M., Espeseth, T., Reinvang, I., Raz, N., et al. (2009). Increased sensitivity to effects of normal aging and Alzheimer’s disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study. Neuroimage, 47, 1545–1557.PubMedCrossRef Westlye, L. T., Walhovd, K. B., Dale, A. M., Espeseth, T., Reinvang, I., Raz, N., et al. (2009). Increased sensitivity to effects of normal aging and Alzheimer’s disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study. Neuroimage, 47, 1545–1557.PubMedCrossRef
Zurück zum Zitat Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82.CrossRef Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82.CrossRef
Zurück zum Zitat Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116–1128.PubMedCrossRef Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116–1128.PubMedCrossRef
Zurück zum Zitat Zaidi, H., Ruest, T., Schoenahl, F., & Montandon, M. L. (2006). Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage, 32, 1591–1607.PubMedCrossRef Zaidi, H., Ruest, T., Schoenahl, F., & Montandon, M. L. (2006). Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage, 32, 1591–1607.PubMedCrossRef
Zurück zum Zitat Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.PubMedCrossRef Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.PubMedCrossRef
Metadaten
Titel
An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data
verfasst von
Brian B. Avants
Nicholas J. Tustison
Jue Wu
Philip A. Cook
James C. Gee
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
Neuroinformatics / Ausgabe 4/2011
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-011-9109-y

Weitere Artikel der Ausgabe 4/2011

Neuroinformatics 4/2011 Zur Ausgabe