Skip to main content
Erschienen in: Neuroinformatics 2-3/2011

01.09.2011 | Original Article

A Broadly Applicable 3-D Neuron Tracing Method Based on Open-Curve Snake

verfasst von: Yu Wang, Arunachalam Narayanaswamy, Chia-Ling Tsai, Badrinath Roysam

Erschienen in: Neuroinformatics | Ausgabe 2-3/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a broadly applicable algorithm and a comprehensive open-source software implementation for automated tracing of neuronal structures in 3-D microscopy images. The core 3-D neuron tracing algorithm is based on three-dimensional (3-D) open-curve active Contour (Snake). It is initiated from a set of automatically detected seed points. Its evolution is driven by a combination of deforming forces based on the Gradient Vector Flow (GVF), stretching forces based on estimation of the fiber orientations, and a set of control rules. In this tracing model, bifurcation points are detected implicitly as points where multiple snakes collide. A boundariness measure is employed to allow local radius estimation. A suite of pre-processing algorithms enable the system to accommodate diverse neuronal image datasets by reducing them to a common image format. The above algorithms form the basis for a comprehensive, scalable, and efficient software system developed for confocal or brightfield images. It provides multiple automated tracing modes. The user can optionally interact with the tracing system using multiple view visualization, and exercise full control to ensure a high quality reconstruction. We illustrate the utility of this tracing system by presenting results from a synthetic dataset, a brightfield dataset and two confocal datasets from the DIADEM challenge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdul-Karim, M. A., Roysam, B., Dowell-Mesfin, N. M., Jeromin, A., Yuksel, M., & Kalyanaraman, S. (2005). Automatic selection of parameters for vessel/neurite segmentation algorithms. IEEE Transactions on Image Processing, 14(9), 1338–50.PubMedCrossRef Abdul-Karim, M. A., Roysam, B., Dowell-Mesfin, N. M., Jeromin, A., Yuksel, M., & Kalyanaraman, S. (2005). Automatic selection of parameters for vessel/neurite segmentation algorithms. IEEE Transactions on Image Processing, 14(9), 1338–50.PubMedCrossRef
Zurück zum Zitat Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.PubMedCrossRef Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.PubMedCrossRef
Zurück zum Zitat Aylward, S. R., & Bullitt, E. (2002). Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Medical Imaging, 21(2), 61–75.CrossRef Aylward, S. R., & Bullitt, E. (2002). Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Medical Imaging, 21(2), 61–75.CrossRef
Zurück zum Zitat Bauer, C., Bischof, H. (2008). A Novel Approach for Detection of Tubular Objects and Its Application to Medical Image Analysis. Proceedings of the 30th DAGM symposium on Pattern Recognition, 163–172. Bauer, C., Bischof, H. (2008). A Novel Approach for Detection of Tubular Objects and Its Application to Medical Image Analysis. Proceedings of the 30th DAGM symposium on Pattern Recognition, 163–172.
Zurück zum Zitat Benmansour, F., Cohen, L. D. (2010). Tubular Structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision, 1–19. Benmansour, F., Cohen, L. D. (2010). Tubular Structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision, 1–19.
Zurück zum Zitat Boykov, Y., Veksler, O., & Zabih, R. (2001). Efficient approximate energy minimization via graph cuts. IEEE Transactions on PAMI, 20(12), 1222–1239.CrossRef Boykov, Y., Veksler, O., & Zabih, R. (2001). Efficient approximate energy minimization via graph cuts. IEEE Transactions on PAMI, 20(12), 1222–1239.CrossRef
Zurück zum Zitat Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3-D microscopy image stacks. Neuroimage, 32(4), 1608–1620.PubMedCrossRef Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3-D microscopy image stacks. Neuroimage, 32(4), 1608–1620.PubMedCrossRef
Zurück zum Zitat Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. (2008). Using nonlinear diffusion and mean shift to detect and connect cross-sections of axons in 3-D optical microscopy images. Medical Image Analysis, 12(6), 666–75.PubMedCrossRef Cai, H., Xu, X., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. (2008). Using nonlinear diffusion and mean shift to detect and connect cross-sections of axons in 3-D optical microscopy images. Medical Image Analysis, 12(6), 666–75.PubMedCrossRef
Zurück zum Zitat Cohen, LD., Kimmel R. (1997). Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision, 24, 57–78. Cohen, LD., Kimmel R. (1997). Global minimum for active contour models: a minimal path approach. International Journal of Computer Vision, 24, 57–78.
Zurück zum Zitat Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. Journal de Microscopie, 173(2), 103–114. Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. Journal de Microscopie, 173(2), 103–114.
Zurück zum Zitat Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.CrossRef Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.CrossRef
Zurück zum Zitat Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.PubMedCrossRef Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.PubMedCrossRef
Zurück zum Zitat Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention, 1496, 130–137. Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention, 1496, 130–137.
Zurück zum Zitat Freiman, M., Broide, N., Natanzon, M., Nammer, E., Shilon, O., Weizman, L., Joshowicz, L., & Sosna, J. (2009). Vessels-cut: a graph based approach to patient-specific carotid arteries modeling. Proc. 2nd workshop on: 3D Physiological Human, Springer LNCS, 5903, 1–12. Freiman, M., Broide, N., Natanzon, M., Nammer, E., Shilon, O., Weizman, L., Joshowicz, L., & Sosna, J. (2009). Vessels-cut: a graph based approach to patient-specific carotid arteries modeling. Proc. 2nd workshop on: 3D Physiological Human, Springer LNCS, 5903, 1–12.
Zurück zum Zitat Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14, 771–780. Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14, 771–780.
Zurück zum Zitat Fridman, Y., Pizer, S. M., Aylward, S., & Bullitt, E. (2003). Segmenting 3-D branching tubular structures using cores. MICCAI, 2003, 570–577. Fridman, Y., Pizer, S. M., Aylward, S., & Bullitt, E. (2003). Segmenting 3-D branching tubular structures using cores. MICCAI, 2003, 570–577.
Zurück zum Zitat González, G., Türetken, E., Fleuret, F., Fua, P. (2010). Delineating trees in 2-D images and 3-D image-stacks. Proc. of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR), 2799–2806. González, G., Türetken, E., Fleuret, F., Fua, P. (2010). Delineating trees in 2-D images and 3-D image-stacks. Proc. of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR), 2799–2806.
Zurück zum Zitat Hamarneh, G., & Jassi, P. (2010). VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Computerized Medical Imaging and Graphics, 34(8), 605–16.PubMedCrossRef Hamarneh, G., & Jassi, P. (2010). VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Computerized Medical Imaging and Graphics, 34(8), 605–16.PubMedCrossRef
Zurück zum Zitat He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., et al. (2003). Automated three-dimensional tracing of neurons in confocal and brigheld images. Proc. of Microscopy and Microanalysis, 9(4), 296–310. He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., et al. (2003). Automated three-dimensional tracing of neurons in confocal and brigheld images. Proc. of Microscopy and Microanalysis, 9(4), 296–310.
Zurück zum Zitat Kong, K. Y., Marcus, A., Young, H. J., Giannakakou, P., & Wang, M. (2005). Computer assisted analysis of microtubule dynamics in living cells. Conference of the IEEE Engineering in Medicine and Biology Society, 4, 3982–5. Kong, K. Y., Marcus, A., Young, H. J., Giannakakou, P., & Wang, M. (2005). Computer assisted analysis of microtubule dynamics in living cells. Conference of the IEEE Engineering in Medicine and Biology Society, 4, 3982–5.
Zurück zum Zitat Krissian, K., Malandain, G., Ayache, N., Vaillant, R., & Trousset, Y. (2000). Model based detection of tubular structures in 3-D images. Computer Vision and Image Understanding, 80(2), 130–171.CrossRef Krissian, K., Malandain, G., Ayache, N., Vaillant, R., & Trousset, Y. (2000). Model based detection of tubular structures in 3-D images. Computer Vision and Image Understanding, 80(2), 130–171.CrossRef
Zurück zum Zitat Lesage, D., Angelini, E. D., Bloch, I., Funka-Lea, G.. (2009). Design and study of flux-based features for 3-D vascular tracking. IEEE International Symposium on Biomedical Imaging 286–289. Lesage, D., Angelini, E. D., Bloch, I., Funka-Lea, G.. (2009). Design and study of flux-based features for 3-D vascular tracking. IEEE International Symposium on Biomedical Imaging 286–289.
Zurück zum Zitat Li, H., Shen, T., Smith, M. B., Fujiwara, I., Vavylonis, D., Huang, X. (2009). Automated actin filament segmentation, tracking, and tip elongation measurements based on open active contour models. Proc. of the IEEE Int’l Symposium on Biomedical Imaging: From Nano to Macro (ISBI), 1302–1305. Li, H., Shen, T., Smith, M. B., Fujiwara, I., Vavylonis, D., Huang, X. (2009). Automated actin filament segmentation, tracking, and tip elongation measurements based on open active contour models. Proc. of the IEEE Int’l Symposium on Biomedical Imaging: From Nano to Macro (ISBI), 1302–1305.
Zurück zum Zitat Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.PubMedCrossRef Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.PubMedCrossRef
Zurück zum Zitat Luisi, J., Narayanaswamy, A., Galbreath, Z., Roysam, B. (2011). The farsight trace editor. Neuroinformatics. Submitted. Luisi, J., Narayanaswamy, A., Galbreath, Z., Roysam, B. (2011). The farsight trace editor. Neuroinformatics. Submitted.
Zurück zum Zitat Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704.CrossRef Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704.CrossRef
Zurück zum Zitat Meijering, E., Jacob, M., Sarria, J.-C. F., Unser, M. (2003). A novel approach to neurite tracing in fluorescence microscopy images. International Conference on Signal and Image Processing, 491–495. Meijering, E., Jacob, M., Sarria, J.-C. F., Unser, M. (2003). A novel approach to neurite tracing in fluorescence microscopy images. International Conference on Signal and Image Processing, 491–495.
Zurück zum Zitat Mohan, V., Sundaramoorthi, G., Stillman, A., & Tannenbaum, A. (2009). Vessel Segmentation with Automatic Centerline Extraction using Tubular Surface Segmentation. Int Conf MICCAI: Proceedings of the Workshop on Cardiac Interventional Imaging and Biophysical Modelling. Mohan, V., Sundaramoorthi, G., Stillman, A., & Tannenbaum, A. (2009). Vessel Segmentation with Automatic Centerline Extraction using Tubular Surface Segmentation. Int Conf MICCAI: Proceedings of the Workshop on Cardiac Interventional Imaging and Biophysical Modelling.
Zurück zum Zitat Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). A Preprocessing Pipeline to Enhance 3-D Images of Neuronal Arbors. Submitted: Neuroinformatics. Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). A Preprocessing Pipeline to Enhance 3-D Images of Neuronal Arbors. Submitted: Neuroinformatics.
Zurück zum Zitat Narayanaswamy, A., Dwarakapuram, S., Bjornsson, C. S., Cutler, B. M., Shain, W., & Roysam, B. (2010). Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation. IEEE Transactions on Medical Imaging, 29(3), 583–97.PubMedCrossRef Narayanaswamy, A., Dwarakapuram, S., Bjornsson, C. S., Cutler, B. M., Shain, W., & Roysam, B. (2010). Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation. IEEE Transactions on Medical Imaging, 29(3), 583–97.PubMedCrossRef
Zurück zum Zitat Peng, H. C., Ruan, Z. C., Atasoy, D., & Sternson, S. (2010a). Automatic reconstruction of 3-D neuron structures using a graph-augmented deformable model. Bioinformatics, 26(12), i38–46.CrossRef Peng, H. C., Ruan, Z. C., Atasoy, D., & Sternson, S. (2010a). Automatic reconstruction of 3-D neuron structures using a graph-augmented deformable model. Bioinformatics, 26(12), i38–46.CrossRef
Zurück zum Zitat Peng, H. C., Ruan, Z. C., Long, F. H., Simpson, J. H., & Myers, E. W. (2010b). V3D enables real-time 3-D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28, 348–353.CrossRef Peng, H. C., Ruan, Z. C., Long, F. H., Simpson, J. H., & Myers, E. W. (2010b). V3D enables real-time 3-D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28, 348–353.CrossRef
Zurück zum Zitat Pock, T., Beichel, R., Bischof, H. (2005). A novel robust tube detection filter for 3-D centerline extraction. 18th Symposium on Operating System Principles, 481–490. Pock, T., Beichel, R., Bischof, H. (2005). A novel robust tube detection filter for 3-D centerline extraction. 18th Symposium on Operating System Principles, 481–490.
Zurück zum Zitat Pool, M., Thiemann, J., Bar-Or, A., & Fournier, A. E. (2008). NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. Journal of Neuroscience Methods, 168, 134–139.PubMedCrossRef Pool, M., Thiemann, J., Bar-Or, A., & Fournier, A. E. (2008). NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. Journal of Neuroscience Methods, 168, 134–139.PubMedCrossRef
Zurück zum Zitat Schmitt, S., Evers, J. F., Duch, C., Scholz, M., & Obermayer, K. (2004). New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage, 23, 1283–1298.PubMedCrossRef Schmitt, S., Evers, J. F., Duch, C., Scholz, M., & Obermayer, K. (2004). New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage, 23, 1283–1298.PubMedCrossRef
Zurück zum Zitat Sethian, J. A. (1996). Level set methods and fast marching methods. Cambridge University Press. Sethian, J. A. (1996). Level set methods and fast marching methods. Cambridge University Press.
Zurück zum Zitat Srinivasan, R., Zhou, X. B., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2007). Automated axon tracking of 3-D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinform, 5, 189–203.CrossRef Srinivasan, R., Zhou, X. B., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2007). Automated axon tracking of 3-D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinform, 5, 189–203.CrossRef
Zurück zum Zitat Srinivasan, R., Zhou, X. B., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2010). Reconstruction of the neuromuscular junction connectome. Bioinformatics, 26(12), i64–i70.PubMedCrossRef Srinivasan, R., Zhou, X. B., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2010). Reconstruction of the neuromuscular junction connectome. Bioinformatics, 26(12), i64–i70.PubMedCrossRef
Zurück zum Zitat Tyrrell, J A. (2006). Modeling and analysis of tubular structures in medical images: With applications to fluorescence microscopy. Rensselaer Polytechnic Institute, Phd Thesis. Tyrrell, J A. (2006). Modeling and analysis of tubular structures in medical images: With applications to fluorescence microscopy. Rensselaer Polytechnic Institute, Phd Thesis.
Zurück zum Zitat Vasilkoski, Z., & Stepanyants, A. (2009). Detection of the optimal neuron traces in confocal microscopy images. Journal of Neuroscience Methods, 178(1), 197–204.PubMedCrossRef Vasilkoski, Z., & Stepanyants, A. (2009). Detection of the optimal neuron traces in confocal microscopy images. Journal of Neuroscience Methods, 178(1), 197–204.PubMedCrossRef
Zurück zum Zitat Wang, J., Zhou, X. B., Lu, J., Lichtman, J., Chang, S. F., Wong, S. T. C. (2007). Dynamic local tracing for 3-D axon curvilinear structure detection from microscopic image stack. In IEEE International Symposium of Biomedical Imaging (ISBI), 81–84. Wang, J., Zhou, X. B., Lu, J., Lichtman, J., Chang, S. F., Wong, S. T. C. (2007). Dynamic local tracing for 3-D axon curvilinear structure detection from microscopic image stack. In IEEE International Symposium of Biomedical Imaging (ISBI), 81–84.
Zurück zum Zitat Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Hendersion, S. C., & Hof, P. R. (2005). New Techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.PubMedCrossRef Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Hendersion, S. C., & Hof, P. R. (2005). New Techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.PubMedCrossRef
Zurück zum Zitat Xie, J., Zhao, T., Lee, T., Myers, E., & Peng, H. (2010). Automatic neuron tracing in volumetric microscopy images with anisotropic path searching. MICCAI, 13(2), 472–9.PubMed Xie, J., Zhao, T., Lee, T., Myers, E., & Peng, H. (2010). Automatic neuron tracing in volumetric microscopy images with anisotropic path searching. MICCAI, 13(2), 472–9.PubMed
Zurück zum Zitat Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.PubMedCrossRef Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.PubMedCrossRef
Zurück zum Zitat Yuan, X., Trachtenberg, J. T., Potter, S. M., & Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7, 213–232.PubMedCrossRef Yuan, X., Trachtenberg, J. T., Potter, S. M., & Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7, 213–232.PubMedCrossRef
Metadaten
Titel
A Broadly Applicable 3-D Neuron Tracing Method Based on Open-Curve Snake
verfasst von
Yu Wang
Arunachalam Narayanaswamy
Chia-Ling Tsai
Badrinath Roysam
Publikationsdatum
01.09.2011
Verlag
Springer-Verlag
Erschienen in
Neuroinformatics / Ausgabe 2-3/2011
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-011-9110-5

Weitere Artikel der Ausgabe 2-3/2011

Neuroinformatics 2-3/2011 Zur Ausgabe