Skip to main content
Erschienen in: Neuroinformatics 2/2013

01.04.2013 | Original Article

iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing

verfasst von: Yakang Dai, Feng Shi, Li Wang, Guorong Wu, Dinggang Shen

Erschienen in: Neuroinformatics | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It’s a great challenge to analyze infant brain MR images due to the small brain size and low contrast of the developing brain tissues. We have developed an Infant Brain Extraction and Analysis Toolbox (iBEAT) for various processing of magnetic resonance (MR) images of infant brains. Several major functions generally used in infant brain analysis are integrated in iBEAT, including image preprocessing, brain extraction, tissue segmentation, and brain labeling. The functions of brain extraction, tissue segmentation, and brain labeling are provided respectively by three state-of-the-art algorithms. First, a learning-based meta-algorithm which integrates a group of brain extraction results generated by the two existing brain extraction algorithms (BET and BSE) was implemented in iBEAT for extraction of infant brains from MR images. Second, a level-sets-based tissue segmentation algorithm that utilizes multimodality information, cortical thickness constraint, and longitudinal consistency constraint was also included in iBEAT for segmentation of infant brain tissues. Third, HAMMER (standing for Hierarchical Attribute Matching Mechanism for Elastic Registration) registration algorithm was further included in iBEAT to label regions of interest (ROIs) of infant brain images by warping the pre-labeled ROIs of a template to the infant brain image space. By integration of these state-of-the-art methods, iBEAT is able to segment and label infant brain MR images accurately. Moreover, it can process not only single-time-point images for cross-sectional studies, but also multiple-time-point images of the same infant for longitudinal studies. The performance of iBEAT has been comprehensively evaluated with hundreds of infant brain images. A Linux-based standalone package of iBEAT is freely available at http://​www.​nitrc.​org/​projects/​ibeat.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 56–63.PubMedCrossRef Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 56–63.PubMedCrossRef
Zurück zum Zitat Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10, 266–277.PubMedCrossRef Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10, 266–277.PubMedCrossRef
Zurück zum Zitat Chi, J., Dooling, E., & Gilles, F. (1977). Gyral development of the human brain. Annals of Neurology, 1, 86–93.PubMedCrossRef Chi, J., Dooling, E., & Gilles, F. (1977). Gyral development of the human brain. Annals of Neurology, 1, 86–93.PubMedCrossRef
Zurück zum Zitat Crum, W. R., Griffin, L. D., Hill, D. L. G., & Hawkes, D. J. (2003). Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage, 20, 1425–1437.PubMedCrossRef Crum, W. R., Griffin, L. D., Hill, D. L. G., & Hawkes, D. J. (2003). Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage, 20, 1425–1437.PubMedCrossRef
Zurück zum Zitat Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., Borradori-Tolsa, C., Mangin, J. F., & Huppi, P. S. (2008). Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18, 1444–1454.PubMedCrossRef Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., Borradori-Tolsa, C., Mangin, J. F., & Huppi, P. S. (2008). Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18, 1444–1454.PubMedCrossRef
Zurück zum Zitat Eskildsen, S. F., Coupe, P., Fonov, V., Manjon, J. V., Leung, K. K., Guizard, N., Wassef, S. N., Ostergaard, L. R., & Collins, D. L. (2012). BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage, 59, 2362–2373.PubMedCrossRef Eskildsen, S. F., Coupe, P., Fonov, V., Manjon, J. V., Leung, K. K., Guizard, N., Wassef, S. N., Ostergaard, L. R., & Collins, D. L. (2012). BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage, 59, 2362–2373.PubMedCrossRef
Zurück zum Zitat Fan, Y., Shi, F., Smith, J. K., Lin, W., Gilmore, J. H., & Shen, D. (2011). Brain anatomical networks in early human brain development. NeuroImage, 54, 1862–1871.PubMedCrossRef Fan, Y., Shi, F., Smith, J. K., Lin, W., Gilmore, J. H., & Shen, D. (2011). Brain anatomical networks in early human brain development. NeuroImage, 54, 1862–1871.PubMedCrossRef
Zurück zum Zitat Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRef Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.PubMedCrossRef
Zurück zum Zitat Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315, 972–976.PubMedCrossRef Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315, 972–976.PubMedCrossRef
Zurück zum Zitat Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (2007). Statistical parametric mapping: The analysis of functional brain images. Academic Press. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (2007). Statistical parametric mapping: The analysis of functional brain images. Academic Press.
Zurück zum Zitat Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M., & Shen, D. (2011). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex. doi:10.1093/cercor/bhr327. Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M., & Shen, D. (2011). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex. doi:10.​1093/​cercor/​bhr327.
Zurück zum Zitat He, B., Dai, Y. K., Astolfi, L., Babiloni, F., Yuan, H., & Yang, L. (2011). eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity. Journal of Neuroscience Methods, 195, 261–269.PubMedCrossRef He, B., Dai, Y. K., Astolfi, L., Babiloni, F., Yuan, H., & Yang, L. (2011). eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity. Journal of Neuroscience Methods, 195, 261–269.PubMedCrossRef
Zurück zum Zitat Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333.PubMedCrossRef Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333.PubMedCrossRef
Zurück zum Zitat Ibanez, L., Schroeder, W., Ng, L., J., C. (2003). The ITK software guide: The insight segmentation and registration toolkit (version 1.4). Kitware, Inc. Ibanez, L., Schroeder, W., Ng, L., J., C. (2003). The ITK software guide: The insight segmentation and registration toolkit (version 1.4). Kitware, Inc.
Zurück zum Zitat Iglesias, J. E., Liu, C. Y., Thompson, P. M., & Tu, Z. W. (2011). Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging, 30, 1617–1634.PubMedCrossRef Iglesias, J. E., Liu, C. Y., Thompson, P. M., & Tu, Z. W. (2011). Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging, 30, 1617–1634.PubMedCrossRef
Zurück zum Zitat Kagan, J., & Herschkowitz, N. (2005). Young mind in a growing brain. Mahwah, N.J: Lawrence Erlbaum. Kagan, J., & Herschkowitz, N. (2005). Young mind in a growing brain. Mahwah, N.J: Lawrence Erlbaum.
Zurück zum Zitat Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 12176–12182.PubMedCrossRef Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 12176–12182.PubMedCrossRef
Zurück zum Zitat Leung, K. K., Barnes, J., Modat, M., Ridgway, G. R., Bartlett, J. W., Fox, N. C., Ourselin, S., & Initia, A. D. N. (2011). Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. NeuroImage, 55, 1091–1108.PubMedCrossRef Leung, K. K., Barnes, J., Modat, M., Ridgway, G. R., Bartlett, J. W., Fox, N. C., Ourselin, S., & Initia, A. D. N. (2011). Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. NeuroImage, 55, 1091–1108.PubMedCrossRef
Zurück zum Zitat Luan, H.X., Qi, F.H., Xue, Z., Chen, L.Y., & Shen, D.G. (2008). Multimodality image registration by maximization of quantitative-qualitative measure of mutual information. Pattern Recognition, 41, 285-298. Luan, H.X., Qi, F.H., Xue, Z., Chen, L.Y., & Shen, D.G. (2008). Multimodality image registration by maximization of quantitative-qualitative measure of mutual information. Pattern Recognition, 41, 285-298.
Zurück zum Zitat Nie, J., Li, G., Wang, L., Gilmore, J. H., Lin, W., & Shen, D. (2011). A computational growth model for measuring dynamic cortical development in the first year of life. Cerebral Cortex. doi:10.1093/cercor/bhr293. Nie, J., Li, G., Wang, L., Gilmore, J. H., Lin, W., & Shen, D. (2011). A computational growth model for measuring dynamic cortical development in the first year of life. Cerebral Cortex. doi:10.​1093/​cercor/​bhr293.
Zurück zum Zitat Prastawa, M., Gilmore, J. H., Lin, W. L., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9, 457–466.PubMedCrossRef Prastawa, M., Gilmore, J. H., Lin, W. L., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9, 457–466.PubMedCrossRef
Zurück zum Zitat Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.PubMed Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.PubMed
Zurück zum Zitat Sadananthan, S. A., Zheng, W. L., Chee, M. W. L., & Zagorodnov, V. (2010). Skull stripping using graph cuts. NeuroImage, 49, 225–237.PubMedCrossRef Sadananthan, S. A., Zheng, W. L., Chee, M. W. L., & Zagorodnov, V. (2010). Skull stripping using graph cuts. NeuroImage, 49, 225–237.PubMedCrossRef
Zurück zum Zitat Shattuck, D. W., & Leahy, R. M. (2001). Automated graph-based analysis and correction of cortical volume topology. IEEE Transactions on Medical Imaging, 20, 1167–1177.PubMedCrossRef Shattuck, D. W., & Leahy, R. M. (2001). Automated graph-based analysis and correction of cortical volume topology. IEEE Transactions on Medical Imaging, 20, 1167–1177.PubMedCrossRef
Zurück zum Zitat Shen, D. G., & Davatzikos, C. (2002). HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21, 1421–1439.PubMedCrossRef Shen, D. G., & Davatzikos, C. (2002). HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21, 1421–1439.PubMedCrossRef
Zurück zum Zitat Shen, D. G., & Davatzikos, C. (2004). Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage, 21, 1508–1517.PubMedCrossRef Shen, D. G., & Davatzikos, C. (2004). Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage, 21, 1508–1517.PubMedCrossRef
Zurück zum Zitat Shi, F., Fan, Y., Tang, S. Y., Gilmore, J. H., Lin, W. L., & Shen, D. G. (2010). Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage, 49, 391–400.PubMedCrossRef Shi, F., Fan, Y., Tang, S. Y., Gilmore, J. H., Lin, W. L., & Shen, D. G. (2010). Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage, 49, 391–400.PubMedCrossRef
Zurück zum Zitat Shi, F., Wang, L., Gilmore, J. H., Lin, W., & Shen, D. (2011). Learning-based meta-algorithm for MRI brain extraction. Medical Image Computing and Computer-Assisted Intervention, 14, 313–321.PubMed Shi, F., Wang, L., Gilmore, J. H., Lin, W., & Shen, D. (2011). Learning-based meta-algorithm for MRI brain extraction. Medical Image Computing and Computer-Assisted Intervention, 14, 313–321.PubMed
Zurück zum Zitat Shi, F., Yap, P. T., Wu, G., Jia, H., Gilmore, J. H., Lin, W., & Shen, D. (2011). Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One, 6, e18746.PubMedCrossRef Shi, F., Yap, P. T., Wu, G., Jia, H., Gilmore, J. H., Lin, W., & Shen, D. (2011). Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One, 6, e18746.PubMedCrossRef
Zurück zum Zitat Shi, F., Yap, P. T., Gao, W., Lin, W., Gilmore, J. H., Shen, D. (2012b). Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. Neuroimage. doi:10.1016/j.neuroimage.2012.05.026. Shi, F., Yap, P. T., Gao, W., Lin, W., Gilmore, J. H., Shen, D. (2012b). Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. Neuroimage. doi:10.​1016/​j.​neuroimage.​2012.​05.​026.
Zurück zum Zitat Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRef Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRef
Zurück zum Zitat Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.PubMedCrossRef Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.PubMedCrossRef
Zurück zum Zitat Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y. Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.PubMedCrossRef Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y. Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.PubMedCrossRef
Zurück zum Zitat Thirion, J. P. (1998). Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis, 2, 243–260.PubMedCrossRef Thirion, J. P. (1998). Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis, 2, 243–260.PubMedCrossRef
Zurück zum Zitat Tian, J., Xue, J., Dai, Y., Chen, J., & Zheng, J. (2008). A novel software platform for medical image processing and analyzing. IEEE Transactions on Information Technology in Biomedicine, 12, 800–812. Tian, J., Xue, J., Dai, Y., Chen, J., & Zheng, J. (2008). A novel software platform for medical image processing and analyzing. IEEE Transactions on Information Technology in Biomedicine, 12, 800–812.
Zurück zum Zitat Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.PubMedCrossRef Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.PubMedCrossRef
Zurück zum Zitat Utsunomiya, H., Takano, K., Okazaki, M., & Mitsudome, A. (1999). Development of the temporal lobe in infants and children: Analysis by MR-based volumetry. American Journal of Neuroradiology, 20, 717–723.PubMed Utsunomiya, H., Takano, K., Okazaki, M., & Mitsudome, A. (1999). Development of the temporal lobe in infants and children: Analysis by MR-based volumetry. American Journal of Neuroradiology, 20, 717–723.PubMed
Zurück zum Zitat Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2011). Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage, 58, 805–817.PubMedCrossRef Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2011). Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage, 58, 805–817.PubMedCrossRef
Zurück zum Zitat Wang, L., Shi, F., Yap, P. T., Gilmore, J. H., Lin, W., & Shen, D. (2011). Accurate and consistent 4D segmentation of serial infant brain MR images. Lecture Notes in Computer Science, 7012(2011), 93–101.CrossRef Wang, L., Shi, F., Yap, P. T., Gilmore, J. H., Lin, W., & Shen, D. (2011). Accurate and consistent 4D segmentation of serial infant brain MR images. Lecture Notes in Computer Science, 7012(2011), 93–101.CrossRef
Zurück zum Zitat Wang, L., Shi, F., Yap, P. T., Lin, W., Gilmore, J. H., & Shen, D. (2011). Longitudinally guided level sets for consistent tissue segmentation of neonates. Human Brain Mapping. doi:10.1002/hbm.21486. Wang, L., Shi, F., Yap, P. T., Lin, W., Gilmore, J. H., & Shen, D. (2011). Longitudinally guided level sets for consistent tissue segmentation of neonates. Human Brain Mapping. doi:10.​1002/​hbm.​21486.
Zurück zum Zitat Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25, 1145–1157. Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25, 1145–1157.
Zurück zum Zitat Wu, G., Wang, Q., Jia, H., & Shen, D. (2012). Feature-based groupwise registration by hierarchical anatomical correspondence detection. Human Brain Mapping, 33, 253–271.PubMedCrossRef Wu, G., Wang, Q., Jia, H., & Shen, D. (2012). Feature-based groupwise registration by hierarchical anatomical correspondence detection. Human Brain Mapping, 33, 253–271.PubMedCrossRef
Zurück zum Zitat Wu, G., Wang, Q., & Shen, D. (2012). Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics. Neuroimage, 59, 404–421. Wu, G., Wang, Q., & Shen, D. (2012). Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics. Neuroimage, 59, 404–421.
Zurück zum Zitat Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A. D., Rueckert, D., & Hajnal, J. V. (2007). Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage, 38, 461–477.PubMedCrossRef Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A. D., Rueckert, D., & Hajnal, J. V. (2007). Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage, 38, 461–477.PubMedCrossRef
Zurück zum Zitat Xue, Z., Shen, D., & Davatzikos, C. (2006). CLASSIC: consistent longitudinal alignment and segmentation for serial image computing. Neuroimage, 30, 388–399. Xue, Z., Shen, D., & Davatzikos, C. (2006). CLASSIC: consistent longitudinal alignment and segmentation for serial image computing. Neuroimage, 30, 388–399.
Zurück zum Zitat Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31, 1116–1128.PubMedCrossRef Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31, 1116–1128.PubMedCrossRef
Zurück zum Zitat Zeng, X., Staib, L. H., Schultz, R. T., & Duncan, J. S. (1999). Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Transactions on Medical Imaging, 18, 100–111.CrossRef Zeng, X., Staib, L. H., Schultz, R. T., & Duncan, J. S. (1999). Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Transactions on Medical Imaging, 18, 100–111.CrossRef
Metadaten
Titel
iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing
verfasst von
Yakang Dai
Feng Shi
Li Wang
Guorong Wu
Dinggang Shen
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Neuroinformatics / Ausgabe 2/2013
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-012-9164-z

Weitere Artikel der Ausgabe 2/2013

Neuroinformatics 2/2013 Zur Ausgabe