Skip to main content
Erschienen in: Neuroinformatics 3/2014

01.07.2014 | Original Article

Efficient Spiking Neural Network Model of Pattern Motion Selectivity in Visual Cortex

verfasst von: Michael Beyeler, Micah Richert, Nikil D. Dutt, Jeffrey L. Krichmar

Erschienen in: Neuroinformatics | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299.CrossRef Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299.CrossRef
Zurück zum Zitat Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523–525.PubMedCrossRef Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523–525.PubMedCrossRef
Zurück zum Zitat Browning, N. A., Grossberg, S., & Mingolla, E. (2009a). Cortical dynamics of navigation and steering in natural scenes: motion-based object segmentation, heading, and obstacle avoidance. Neural Networks, 22(10), 1383–1398. doi:10.1016/j.neunet.2009.05.007.CrossRef Browning, N. A., Grossberg, S., & Mingolla, E. (2009a). Cortical dynamics of navigation and steering in natural scenes: motion-based object segmentation, heading, and obstacle avoidance. Neural Networks, 22(10), 1383–1398. doi:10.​1016/​j.​neunet.​2009.​05.​007.CrossRef
Zurück zum Zitat Chey, J., Grossberg, S., & Mingolla, E. (1997). Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction. Journal of the Optical Society of America a-Optics Image Science and Vision, 14(10), 2570–2594. doi:10.1364/Josaa.14.002570.CrossRef Chey, J., Grossberg, S., & Mingolla, E. (1997). Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction. Journal of the Optical Society of America a-Optics Image Science and Vision, 14(10), 2570–2594. doi:10.​1364/​Josaa.​14.​002570.CrossRef
Zurück zum Zitat Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli—a general basis for studying non-fourier motion perception. Journal of the Optical Society of America a-Optics Image Science and Vision, 5(11), 1986–2007. doi:10.1364/Josaa.5.001986.CrossRef Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli—a general basis for studying non-fourier motion perception. Journal of the Optical Society of America a-Optics Image Science and Vision, 5(11), 1986–2007. doi:10.​1364/​Josaa.​5.​001986.CrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems (Computational neuroscience). Cambridge: Massachusetts Institute of Technology Press. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems (Computational neuroscience). Cambridge: Massachusetts Institute of Technology Press.
Zurück zum Zitat DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology, 69(4), 1118–1135.PubMed DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology, 69(4), 1118–1135.PubMed
Zurück zum Zitat Ferrera, V. P., & Wilson, H. R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research, 30(2), 273–287.PubMedCrossRef Ferrera, V. P., & Wilson, H. R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research, 30(2), 273–287.PubMedCrossRef
Zurück zum Zitat Fidjeland, A. K., & Shanahan, M. P. (2010). Accelerated simulation of spiking neural networks using GPUs. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:10.1109/IJCNN.2010.5596678. Fidjeland, A. K., & Shanahan, M. P. (2010). Accelerated simulation of spiking neural networks using GPUs. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:10.​1109/​IJCNN.​2010.​5596678.
Zurück zum Zitat Freeman, W. T., & Adelson, E. H. (1991). The design and use of steerable filters. In IEEE Pattern Analysis and Machine Intelligence (Vol. 13, pp. 891–906). Freeman, W. T., & Adelson, E. H. (1991). The design and use of steerable filters. In IEEE Pattern Analysis and Machine Intelligence (Vol. 13, pp. 891–906).
Zurück zum Zitat Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1), 211–221. doi:10.1109/Tnn.2005.860850.PubMedCrossRef Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1), 211–221. doi:10.​1109/​Tnn.​2005.​860850.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting (Computational neuroscience). Cambridge: MIT Press. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting (Computational neuroscience). Cambridge: MIT Press.
Zurück zum Zitat Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., & Painkras, E. SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor. In IEEE International Joint Conference on Neural Networks, 2008 (pp. 2849–2856). Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., & Painkras, E. SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor. In IEEE International Joint Conference on Neural Networks, 2008 (pp. 2849–2856).
Zurück zum Zitat Koch, C. (1999). Biophysics of computation: Information processing in single neurons (Computational neuroscience). New York: Oxford University Press. Koch, C. (1999). Biophysics of computation: Information processing in single neurons (Computational neuroscience). New York: Oxford University Press.
Zurück zum Zitat Layton, O. W., Mingolla, E., & Browning, N. A. (2012). A motion pooling model of visually guided navigation explains human behavior in the presence of independently moving objects. Journal of Vision, 12(1), doi:10.1167/12.1.20. Layton, O. W., Mingolla, E., & Browning, N. A. (2012). A motion pooling model of visually guided navigation explains human behavior in the presence of independently moving objects. Journal of Vision, 12(1), doi:10.​1167/​12.​1.​20.
Zurück zum Zitat Merolla, P. A., Arthur, J. V., Shi, B. E., & Boahen, K. A. (2007). Expandable networks for neuromorphic chips. IEEE Transactions on Circuits and Systems I-Regular Papers, 54(2), 301–311. doi:10.1109/Tcsi.2006.887474.CrossRef Merolla, P. A., Arthur, J. V., Shi, B. E., & Boahen, K. A. (2007). Expandable networks for neuromorphic chips. IEEE Transactions on Circuits and Systems I-Regular Papers, 54(2), 301–311. doi:10.​1109/​Tcsi.​2006.​887474.CrossRef
Zurück zum Zitat Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741.PubMed Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741.PubMed
Zurück zum Zitat Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns (Pattern recognition mechanisms). New York: Springer. Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns (Pattern recognition mechanisms). New York: Springer.
Zurück zum Zitat Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22(5–6), 791–800. doi:10.1016/j.neunet.2009.06.028.PubMedCrossRef Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22(5–6), 791–800. doi:10.​1016/​j.​neunet.​2009.​06.​028.PubMedCrossRef
Zurück zum Zitat Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature, 414(6866), 905–908. doi:10.1038/414905a.PubMedCrossRef Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature, 414(6866), 905–908. doi:10.​1038/​414905a.PubMedCrossRef
Zurück zum Zitat Perrone, J. A. (2012). A neural-based code for computing image velocity from small sets of middle temporal (MT/V5) neuron inputs. Journal of Vision, 12(8), doi:10.1167/12.8.1. Perrone, J. A. (2012). A neural-based code for computing image velocity from small sets of middle temporal (MT/V5) neuron inputs. Journal of Vision, 12(8), doi:10.​1167/​12.​8.​1.
Zurück zum Zitat Perrone, J. A., & Thiele, A. (2001). Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nature Neuroscience, 4(5), 526–532.PubMed Perrone, J. A., & Thiele, A. (2001). Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nature Neuroscience, 4(5), 526–532.PubMed
Zurück zum Zitat Perrone, J. A., & Thiele, A. (2002). A model of speed tuning in MT neurons. Vision Research, 42(8), 1035–1051.PubMedCrossRef Perrone, J. A., & Thiele, A. (2002). A model of speed tuning in MT neurons. Vision Research, 42(8), 1035–1051.PubMedCrossRef
Zurück zum Zitat Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural representation of speed in macaque area MT/V5. Journal of Neuroscience, 23(13), 5650–5661.PubMedCentralPubMed Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural representation of speed in macaque area MT/V5. Journal of Neuroscience, 23(13), 5650–5661.PubMedCentralPubMed
Zurück zum Zitat Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers Neuroinformatics, 5, 19. doi:10.3389/fninf.2011.00019.CrossRef Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers Neuroinformatics, 5, 19. doi:10.​3389/​fninf.​2011.​00019.CrossRef
Zurück zum Zitat Rodman, H. R., & Albright, T. D. (1989). Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Experimental Brain Research, 75(1), 53–64.PubMedCrossRef Rodman, H. R., & Albright, T. D. (1989). Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Experimental Brain Research, 75(1), 53–64.PubMedCrossRef
Zurück zum Zitat Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475–9489.PubMed Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475–9489.PubMed
Zurück zum Zitat Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns. Nature Neuroscience, 9(11), 1421–1431. doi:10.1038/Nn1786.PubMedCrossRef Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns. Nature Neuroscience, 9(11), 1421–1431. doi:10.​1038/​Nn1786.PubMedCrossRef
Zurück zum Zitat Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.PubMed Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.PubMed
Zurück zum Zitat Thiele, A., Dobkins, K. R., & Albright, T. D. (2001). Neural correlates of chromatic motion perception. Neuron, 32(2), 351–358.PubMedCrossRef Thiele, A., Dobkins, K. R., & Albright, T. D. (2001). Neural correlates of chromatic motion perception. Neuron, 32(2), 351–358.PubMedCrossRef
Zurück zum Zitat van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America a-Optics Image Science and Vision, 2(2), 300–321.CrossRef van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America a-Optics Image Science and Vision, 2(2), 300–321.CrossRef
Zurück zum Zitat Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A psychophysically motivated model for 2-dimensional motion perception. Visual Neuroscience, 9(1), 79–97.PubMedCrossRef Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A psychophysically motivated model for 2-dimensional motion perception. Visual Neuroscience, 9(1), 79–97.PubMedCrossRef
Zurück zum Zitat Yudanov, D., Shaaban, M., Melton, R., & Reznik, L. (2010). GPU-based simulation of spiking neural networks with real-time performance & high accuracy. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:10.1109/IJCNN.2010.5596334. Yudanov, D., Shaaban, M., Melton, R., & Reznik, L. (2010). GPU-based simulation of spiking neural networks with real-time performance & high accuracy. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:10.​1109/​IJCNN.​2010.​5596334.
Metadaten
Titel
Efficient Spiking Neural Network Model of Pattern Motion Selectivity in Visual Cortex
verfasst von
Michael Beyeler
Micah Richert
Nikil D. Dutt
Jeffrey L. Krichmar
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2014
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-014-9220-y

Weitere Artikel der Ausgabe 3/2014

Neuroinformatics 3/2014 Zur Ausgabe