Skip to main content
Log in

Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells

  • Published:
NanoBiotechnology

Abstract

Biocompatible mesoporous silica nanoparticles, containing the fluorescence dye fluorescein isothiocyanate (FITC), provide a promising system to deliver hydrophobic anticancer drugs to cancer cells. In this study, we investigated the mechanism of uptake of fluorescent mesoporous silica nanoparticles (FMSN) by cancer cells. Incubation with FMSN at different temperatures showed that the uptake was higher at 37°C than at 4°C. Metabolic inhibitors impeded uptake of FMSN into cells. The inhibition of FMSN uptake by nocodazole treatment suggests that microtubule functions are required. We also report utilization of mesoporous silica nanoparticles to deliver a hydrophobic anticancer drug paclitaxel to PANC-1 cancer cells and to induce inhibition of proliferation. Mesoporous silica nanoparticles may provide a valuable vehicle to deliver hydrophobic anticancer drugs to human cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reynolds AR, Moein MS, Hodivala-Dilke K. Trends Mol Med 2003;9:2–4.

    Article  CAS  Google Scholar 

  2. Van Vlerken LE, Amiji MM. Expert Opin Drug Deliv 2006;3:205–16.

    Article  CAS  Google Scholar 

  3. Ebbesen M, Jensen TG. J Biomed Biotechnol 2006;2006:51516.

    Google Scholar 

  4. Brannon-Peppas L, Blanchette JO. Adv Drug Deliv Rev 2004;56:1649–59.

    Article  CAS  Google Scholar 

  5. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Nature 1992;359:710–2.

    Article  CAS  Google Scholar 

  6. Han YJ, Stucky GD, Butler A. J Am Chem Soc 1999;121:9897–8.

    Article  CAS  Google Scholar 

  7. Lu J, Liong M, Zink JI, Tamanoi F. Small 2007;3:1341–6.

    Article  CAS  Google Scholar 

  8. Canonico PG, Bird JWC. J Cell Biol 1969;43:367–71.

    Article  CAS  Google Scholar 

  9. Chen J, Cha Y, Yuksel K, Gracy R, August J. J Biol Chem 1988;263:8754–8.

    CAS  Google Scholar 

  10. Lichstein HC, Soule MH. J Bacteriol 1944;47:231–8.

    CAS  Google Scholar 

  11. Heuser JE, Anderson RG. J Cell Biol 1989;108:389–400.

    Article  CAS  Google Scholar 

  12. Wessing A, Bertram G, Zierold K. J Comp Physiol 1993;163:452.

    CAS  Google Scholar 

  13. Pearse BM, Crowther RA. Annu Rev Biophys Biophys Chem 1987;16:49–68.

    Article  CAS  Google Scholar 

  14. Harvey WR, Maddrell SHP, Telfer WH, Wieczorek H. Amer Zool 1998;38:426–41.

    CAS  Google Scholar 

  15. Samson F, Donoso JA, Heller-Bettinger I, Watson D, Himes RH. J Pharmacol Exp Ther 1979;208:411–7.

    CAS  Google Scholar 

  16. Roma MG, Milkiewicz P, Elias E, Coleman R. Hepatology 2000;32:1342–56.

    Article  CAS  Google Scholar 

  17. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, et al. Biomaterials 2007;28:2959–66.

    Article  CAS  Google Scholar 

  18. Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. J Vet Sci 2006;7:321–6.

    Google Scholar 

  19. Gemeinhart RA, Luo D, Saltzman WM. Biotechnol Prog 2005;21:532–7.

    Article  CAS  Google Scholar 

  20. Xing X, He X, Peng J, Wang K, Tan W. J Nanosci Nanotechnol 2005;5:1688–93.

    Article  CAS  Google Scholar 

  21. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. J Am Chem Soc 1971;93:2325–7.

    Article  CAS  Google Scholar 

  22. Slowing I, Trewyn BG, Lin VS. J Am Chem Soc 2006;128:14792–3.

    Article  CAS  Google Scholar 

  23. Luo D, Saltzman WM. Nat Biotechnol 2000;18:893–5.

    Article  CAS  Google Scholar 

  24. Jin Y, Kannan S, Wu M, Zhao JX. Chem Res Toxicol 2007;20:1126–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by US NIH grants CA32737 (F.T.) and ES015498 (A.N.), NSF grant DMR0346601 (J.Z.) and a grant from Edna E. and Susan E. Riley foundation. Monty Liong and Michael Kovochich are supported by the UC Lead Campus for Nanotoxicology Training and Research, funded by UC TSR&TP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey I. Zink or Fuyuhiko Tamanoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Liong, M., Sherman, S. et al. Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells. Nanobiotechnol 3, 89–95 (2007). https://doi.org/10.1007/s12030-008-9003-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9003-3

Keywords

Navigation