Skip to main content
Log in

Prion Protein Participates in the Protection of Mice from Lipopolysaccharide Infection by Regulating the Inflammatory Process

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Despite the overwhelming evidence of the involvement of prion protein (PrP) in prion disease pathogenesis, the normal functions of this cell surface glycoprotein remain unclear. Previously, we showed that PrP may have a dual regulatory role by regulating the opposite poles of pro-inflammation and anti-inflammation as well as tissue repair in activated microglia. In the present work, we compared the mRNA expression of inflammation-related cytokines (TNF-α, IL-1β, IL-6, NOS2, and IL-10) and IL-4-related alternative activation markers (Arg1 and Mrc1) after lipopolysaccharide (LPS) challenge in the brain and spleen and examined peripheral leukocyte recovery and LPS-induced mortality in PrP knockout mice (PrP−/−) and wild-type (WT) mice. During the acute phase, WT mice exhibited higher levels of pro-inflammatory cytokines in the brain and spleen than in PrP−/− mice, while PrP−/− mice sustained higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines, Arg1, and Mrc1 during the later phase. PrP−/− mice also exhibited a slower peripheral leukocyte recovery process and higher mortality in response to LPS-induced septic shock. These results suggest that the PrP may participate in the protection of mice from LPS infection by regulating the process of inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477

    Article  CAS  PubMed  Google Scholar 

  • Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15:675–705

    Article  CAS  PubMed  Google Scholar 

  • Bainbridge J, Walker KB (2005) The normal cellular form of prion protein modulates T cell responses. Immunol Lett 96:147–150

    Article  CAS  PubMed  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J NeuroImmune Pharm 4:399–418

    Article  Google Scholar 

  • Ding T, Zhou X, Kouadir M, Shi F, Yang Y, Liu J, Wang M, Yin X, Yang L, Zhao D (2013) Cellular prion protein participates in the regulation of inflammatory response and apoptosis in BV2 microglia during infection with Mycobacterium bovis. J Mol Neurosci 51:118–126

    Article  CAS  PubMed  Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Hamilton TA, Ohmori Y, Tebo JM, Kishore R (1999) Regulation of macrophage gene expression by pro- and anti-inflammatory cytokines. Pathobiology 67:241–244

    Article  CAS  PubMed  Google Scholar 

  • Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C (2006) Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 362:623–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88:673–728

    Article  CAS  PubMed  Google Scholar 

  • Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  • Menzies FM, Henriquez FL, Alexander J, Roberts CW (2010) Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation. Clin Exp Immunol 160:369–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red EA, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  CAS  PubMed  Google Scholar 

  • Oveland E, Karlsen TV, Haslene-Hox H, Semaeva E, Janaczyk B, Tenstad O, Wiig H (2012) Proteomic evaluation of inflammatory proteins in rat spleen interstitial fluid and lymph during LPS-induced systemic inflammation reveals increased levels of ADAMST1. J Proteome Res 11:5338–5349

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Richwine AF, Sparkman NL, Dilger RN, Buchanan JB, Johnson RW (2009) Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide. Brain Behav Immun 23:794–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8:776–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  CAS  PubMed  Google Scholar 

  • Salimuddin NA, Gotoh T, Isobe H, Mori M (1999) Regulation of the genes for arginase isoforms and related enzymes in mouse macrophages by lipopolysaccharide. Am J Physiol 277:E110–E117

    CAS  PubMed  Google Scholar 

  • Shi F, Yang L, Kouadir M, Yang Y, Ding T, Wang J, Zhou X, Yin X, Zhao D (2013) Prion protein participates in the regulation of classical and alternative activation of BV2 microglia. J Neurochem 124:168–174

    Article  CAS  PubMed  Google Scholar 

  • Simon SI, Green CE (2005) Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng 7:151–185

    Article  CAS  PubMed  Google Scholar 

  • Soto C (2011) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36:151–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J, Libra M, Stivala F, Milella M, Tafuri A, Lunghi P, Bonati A, Martelli AM, McCubrey JA (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22:686–707

    Article  CAS  PubMed  Google Scholar 

  • Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76:509–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Bruck W (2008) Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 56:271–283

    Article  PubMed  Google Scholar 

  • Vassallo N, Herms J, Behrens C, Krebs B, Saeki K, Onodera T, Windl O, Kretzschmar HA (2005) Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem Biophys Res Commun 332:75–82

    Article  CAS  PubMed  Google Scholar 

  • Wolff S, Klatt S, Wolff JC, Wilhelm J, Fink L, Kaps M, Rosengarten B (2009) Endotoxin-induced gene expression differences in the brain and effects of iNOS inhibition and norepinephrine. Intensive Care Med 35:730–739

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National “12th Five-Year” Plan for Science & Technology Support (Project No.2012AA101302), MoSTRCUK International Cooperation project (Project No. 2013DFG32500), National Natural Science Foundation (Project No.31172293, No.31272532), Chinese Universities Scientific Fund (Project No.2013QT004), and 2013 CAU Foreign Experts Major Projects (project NO.2012Z018).

Conflict of Interest

The authors declare no financial or commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmei Zhou.

Additional information

Jin Liu and Deming Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhao, D., Liu, C. et al. Prion Protein Participates in the Protection of Mice from Lipopolysaccharide Infection by Regulating the Inflammatory Process. J Mol Neurosci 55, 279–287 (2015). https://doi.org/10.1007/s12031-014-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0319-2

Keywords

Navigation