Skip to main content

Advertisement

Log in

Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Profound interest and progress has been made since the invention of nanotechnology in 1959. However, its application in plant tissue culture and biotechnology has not been fully acknowledged in parallel with other facets of this technology. In this manuscript, the AgNPs effects on plant tissue culture and biotechnology encompass their antimicrobial effects and their mechanisms of action addressed to some extends. Moreover, their effects on seedling growth also reviewed. Most of the presented papers in the field of plant science have focused on antimicrobial effects of silver nanoparticles but its interesting inhibitory effects of plant senescence phytohormone ethylene, most likely can open a new window for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arora, S., Jain, J., Rajwade, J. M., & Paknikar, K. M. (2008). Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 179, 93–100.

    Article  CAS  Google Scholar 

  2. Kumari, A., Vemula, P. K., Ajayan, P. M., & John, G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 7, 236–241.

    Article  Google Scholar 

  3. Pantarotto, D., Briand, J P., Prato, M., & Bianco, A. (2004). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications, 16–17. doi:10.1039/B311254C.

  4. Mah, C., Fraites, T. J., Zolotukhin, I., Song, S., Flotte, T. R., Dobson, J., et al. (2002). Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Molecular Therapym, 6, 106–112.

    Article  CAS  Google Scholar 

  5. Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Sciencem, 301, 1884–1886.

    Article  CAS  Google Scholar 

  6. Benelli, G. (2015). Research in mosquito control: Current challenges for a brighter future. Parasitology Research, 114, 2801–2805.

    Article  Google Scholar 

  7. Benelli, G. (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitology Research, 115, 23–34.

    Article  Google Scholar 

  8. Benelli, G. (2016). Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases? Asian Pacific Journal of Tropical Biomedicine, 6, 353–354.

    Article  Google Scholar 

  9. Rajan, R., Chandran, K., Harper, S. L., Yun, S., & Kalaichelvan, P. T. (2015). Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Industrial Crops and Products, 70, 356–373.

    Article  CAS  Google Scholar 

  10. Jaganathan, A., Murugan, K., Panneerselvam, C., Madhiyazhagan, P., Dinesh, D., Vadivalagan, C., et al. (2016). Earthworm mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, Plasmodium parasites and malaria mosquitoes. Parasitology Research, 65, 276–284.

    CAS  Google Scholar 

  11. Murugan, K., Dinesh, D., Kavithaa, K., Paulpandi, M., Ponraj, T., Saleh Alsalhi, M., et al. (2016). Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitology Research, 115, 1085–1569.

    Article  Google Scholar 

  12. Bruchez, M, Jr, Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (2013). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    Article  Google Scholar 

  13. Chan, W. C. W., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 218, 2016–2018.

    Article  Google Scholar 

  14. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163.

    Article  CAS  Google Scholar 

  15. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3, 1–10.

    Article  Google Scholar 

  16. Dunn, K., & Edwards-Jones, V. (2004). The role of Acticoat with nanocrystalline silver in the management of burns. Burns, 30, 1–9.

    Article  Google Scholar 

  17. Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? Journal of Antimicrobial Chemotherapy, 59, 587–590.

    Article  CAS  Google Scholar 

  18. Marshall, J. P., & Schneider, R. P. (1977). Systemic argyria secondary to topical silver nitrate. Archives of Dermatological Research, 133, 1077–1079.

    Article  Google Scholar 

  19. Klasen, H. J. (2000). Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 26, 117–130.

    Article  CAS  Google Scholar 

  20. Solgi, M., Kafi, M., Taghavi, T. S., & Naderi, R. (2009). Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biology and Technology, 53, 155–158.

    Article  CAS  Google Scholar 

  21. Liu, J., He, S., Zhang, Z., Cao, J., Lv, P., He, S., et al. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54, 59–62.

    Article  CAS  Google Scholar 

  22. Abdi, Gh, Salehi, H., & Khosh-Khui, M. (2008). Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 30, 709–714.

    Article  CAS  Google Scholar 

  23. Sarmast, M. K., Salehi, H., & Khosh-Khui, M. (2011). Nano silver treatment is effective in reducing bacterial contamination of Araucaria excelsa R. Br. var. glauca explants. Acta Biologica Hungarica, 62, 477–484.

    Article  CAS  Google Scholar 

  24. Constantine, D. R. (1986). Micropropagation in the commercial environment. In L. Withers & P. G. Alderson (Eds.), Plant tissue culture and its agricultural applications (pp. 175–186). London: Butterworth.

    Chapter  Google Scholar 

  25. Dodds, J. H., & Roberts, W. L. (1981). Some inhibitory effectors on gentamicin on plant tissue culture. In Vitro, 17, 467–470.

    Article  CAS  Google Scholar 

  26. Falkiner, F. R. (1990). The criteria for choosing an antibiotic for control of bacteria in plant tissue culture. IAPTC Newsletters, 60, 13–23.

    Google Scholar 

  27. Leifert, C., Cammota, H., & Waites, W. M. (1992). Effect of combinations of antibiotics on micropropagated Clematis, Delphinium, Hosta, Iris and Photinia. Plant Cell, Tissue and Organ Culture, 29, 153–160.

    Article  CAS  Google Scholar 

  28. Teixeira da Silva, G. A., Duong, T., Michi, T., & Seiichi, F. (2003). The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Scientia Horticulturae, 97, 397–410.

    Article  CAS  Google Scholar 

  29. Leifert, C., Waites, B., Keetley, J. W., Wright, S. M., Nicholas, J. R., & Waites, W. M. (2000). Effect of medium acidification on filamentous fungi, yeasts and bacterial contaminants in Delphinium tissue cultures. Plant Cell, Tissue and Organ Culture, 42, 149–155.

    Google Scholar 

  30. Durán, N., Marcarto, P. D., De Souza, G. I. H., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3, 203–208.

    Article  Google Scholar 

  31. Lee, J., Kim, K., Sung, W. S., Kim, J. G., & Lee, D. G. (2010). The silver nanoparticle (Nano-Ag): A new model for antifungal agents. In: D. P. Perez (Ed.), Silver nanoparticles (334 pp.). In-Teh. India.

  32. Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W., & Harwood, W. A. (2005). A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Reports, 23, 780–789.

    Article  CAS  Google Scholar 

  33. Selwyn, S., & Bakhtiar, M. (1984). Comparative in vitro studies on cefotaxime and desacetylcefotaxime. Drugs Under Experimental and Clinical Research, 12, 953–965.

    Google Scholar 

  34. Holford, P., & Newbury, H. J. (1992). The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Reports, 11, 93–96.

    CAS  Google Scholar 

  35. Yepes, L. M., & Aldwinckle, H. S. (1994). Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell, Tissue and Organ Culture, 37, 257–269.

    CAS  Google Scholar 

  36. Nauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science, 123, 169–177.

    Article  CAS  Google Scholar 

  37. Wiebke, B., Ferreira, F., Pasquali, G., Bodanese-Zanettini, M. H., & Droste, A. (2006). Influence of antibiotics on embryogenic tissue and Agrobacterium tumefaciens suppression in soybean genetic transformation. Bragantia, 65, 543–551.

    Article  CAS  Google Scholar 

  38. Mendes, A. F., Cidade, L. C., de Oliveira, M. L. P., Otoni, W. C., Soares-Filho, W. D. S., & Costa, M. G. C. (2009). Evaluation of novel beta-lactam antibiotics in comparison to cefotaxime on plant regeneration of Citrus sinensis L. Osb. Plant Cell Tissue Organic Culture, 97, 331–336.

    Article  Google Scholar 

  39. Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., et al. (2009). Nano-silver -a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3, 109–138.

    Article  CAS  Google Scholar 

  40. Bragg, P. D., & Rannie, D. J. (1974). The effect of silver ions on the respiratory chain of E. coli. Canadian Journal of Microbiology, 20, 883–889.

    Article  CAS  Google Scholar 

  41. Batarseh, K. I. (2004). Anomaly and correlation of killing in the therapeutic properties of silver (I) chelating with glutamic and tartaric acids. Journal of Antimicrobial Chemotherapy, 54, 546–548.

    Article  CAS  Google Scholar 

  42. Li, Y., Leung, P., Yao, L., Song, Q. W., & Newton, E. (2006). Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 62, 58–63.

    Article  CAS  Google Scholar 

  43. Russell, A. D., & Hugo, W. B. (1994). Antimicrobial activity and action of silver. Progress in Medicinal Chemistry, 31, 351–371.

    Article  CAS  Google Scholar 

  44. Geong, Y., Hwang, H., & Hi, S. C. (2005). Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver. Colloids Journal of Material Science, 40, 5413–5418.

    Article  Google Scholar 

  45. Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419.

    Article  CAS  Google Scholar 

  46. Shrivastava, S., Bera, T., Roy1, A., Singh, G., Ramachandrarao, P., & Debabrata, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103. (9 pp.

  47. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.

    CAS  Google Scholar 

  48. Li, P., Li, J., Wu, C., Wu, Q., & Li, J. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 16, 1912–1917.

    Article  CAS  Google Scholar 

  49. Nowack, B. (2009). Is anything out there? What life cycle perspectives of nano-products can tell us about nanoparticles in the environment. Nano Today, 4, 11–12.

    Article  CAS  Google Scholar 

  50. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105, 269–280.

    Article  CAS  Google Scholar 

  51. Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., et al. (2007). The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research, 119, 77–88.

    Article  CAS  Google Scholar 

  52. Canas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E. H., Olszyk, D. (2008). Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27, 1922–1931.

    Article  Google Scholar 

  53. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3, 3221–3227.

    Article  CAS  Google Scholar 

  54. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.

    Article  CAS  Google Scholar 

  55. Tan, X.-M., Lin, C., & Fugetsu, B. (2009). Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 47, 3479–3487.

    Article  CAS  Google Scholar 

  56. Lin, C., Fugetsu, B., Su, Y., & Watari, F. (2009). Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. Journal of Hazardous Materials, 170, 578–583.

    Article  CAS  Google Scholar 

  57. Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., & Fang, X. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 9, 1007–1010.

    Article  CAS  Google Scholar 

  58. Racuciu, M., & Creanga, D. (2006). TMA-OH coated magnetic nanoparticles internalize in vegetal tissue. Romanian Journal of Physics, 52, 395–402.

    Google Scholar 

  59. Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10, 713–717.

    Article  CAS  Google Scholar 

  60. Lei, Z., Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., et al. (2007). Effects of nano-anatase on spectral characteristics and distribution of LHC II on the thylakoid membranes of spinach. Biological Trace Element Research, 120, 273–283.

    Article  Google Scholar 

  61. Mingyu, S., Fashui, H., Chao, L., Xiao, W., Xiaoqing, L., Liang, C., et al. (2007). Effects of nano-anatase TiO2 on absorption, distribution of light and photoreduction activities of chloroplast membrane of spinach. Biological Trace Element Research, 118, 120–130.

    Article  Google Scholar 

  62. Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., & Hong, F. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? BioMetals, 21, 211–217.

    Article  CAS  Google Scholar 

  63. Linglan, M., Chao, L., Chunxiang, Q., Sitao, Y., Jie, L., Fengqing, G., & Fashui, H. (2008). Rubisco activase mRNA expression in spinach: modulation by nano anatase treatment. Biological Trace Element Research, 122, 168–178.

    Article  Google Scholar 

  64. Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158, 122–132.

    Article  CAS  Google Scholar 

  65. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology, 42, 5580–5585.

    Article  CAS  Google Scholar 

  66. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43, 9473–9479.

    Article  CAS  Google Scholar 

  67. Lee, W.-M., An, Y.-J., Yoon, H., & Kweon, H.-S. (2008). Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (Mung bean) and Triticum aestivum (Wheat); plant agar test for water-insoluble nanoparticles. Environmental Science and Technology, 27, 1915–1921.

    CAS  Google Scholar 

  68. Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R., & Tao, M. X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.

    CAS  Google Scholar 

  69. Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollution, 197, 143–148.

    Article  CAS  Google Scholar 

  70. Ziv, M. (1995). In vitro acclimatization. In Aitken-Christie, J., Kozai, T., & Smith, M. A. L. (Eds.), Automation and environmental control in plant tissue culture (p. 577). Dordecht: Klumer Academic Publisher.

  71. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (p. 761). Sinauer Associates, Inc.

  72. Akasaka-Kennedy, Y., Yoshida, H., & Takahata, Y. (2005). Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): The influence of AgNO3 and genotype. Plant Cell Report, 24, 649–654.

    Article  CAS  Google Scholar 

  73. Qin, Y., Lib, H.-L., & Guo, Y.-D. (2007). High-frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Scientia Horticulturae, 111, 203–208.

  74. Sarmast, M. K., Niazi, A., Salehi, H., & Abolimoghadam, A. (2015). Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell, Tissue and Organ Culture, 121, 227–236.

    Article  CAS  Google Scholar 

  75. Chen, X., & Schluesener, H. J. (2008). Nano-silver: A nanoproduct in medical application. Toxicology Letters, 176, 1–12.

    Article  CAS  Google Scholar 

  76. Murata, T., Kanao-Koshikawa, M., & Takamatsu, T. (2005). Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollution, 164, 103–118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa K. Sarmast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmast, M.K., Salehi, H. Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Mol Biotechnol 58, 441–449 (2016). https://doi.org/10.1007/s12033-016-9943-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9943-0

Keywords

Navigation