Skip to main content
Log in

Investigation of magnetically enhanced swelling behaviour of superparamagnetic starch nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The present study follows a novel strategy for the preparation of superparamagnetic nanoparticles of cross-linked starch impregnated homogeneously with nanosized iron oxide. The prepared magnetic nanoparticles were characterized by infra-red (FTIR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction and magnetization studies. The size of the magnetic polymeric particles was found to lie in the range of 20–80 nm, and they exhibited superparamagnetic properties. The particles were allowed to swell in phosphate buffer saline (PBS) and the influence of factors such as chemical composition of nanoparticles, pH and temperature of the swelling bath and applied magnetic field was investigated on the water intake capacity of the nanoparticles. The prepared nanoparticles showed potential to provide a possible option for controlled and targeted delivery of anticancer drugs, applying external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Arruebo M, Fernandez-Pacheco R and Ibarra M R 2007 Nanotoday 2 22

    Article  Google Scholar 

  • Bajpai A K and Bhanu S 2007 J. Mater. Sci. Mater. Med. 18 1613

    Article  CAS  Google Scholar 

  • Bajpai A K and Bundela H 2008 eXpress Polym. Lett. 2 201

    Article  Google Scholar 

  • Balaban R S, Koretsky A P and Dunbar C E 2003 Blood 102 867

    Article  Google Scholar 

  • Chairam S and Somsook E 2008 J. Magn. Magn. Mater. 320 2039

    Article  CAS  Google Scholar 

  • Chia C H, Zakaria S, Ahmad S, Abdullah M H and Jani S M 2006 Am. J. Appl. Sci. 3 1750

    Article  CAS  Google Scholar 

  • Chouly C et al 1996 J. Microencapsulation 13 245

    Article  CAS  Google Scholar 

  • Conte L L, Nitin N and Bao G 2005 Nanotoday 8 32

    Google Scholar 

  • Corre D, Bras J and Dufrense A 2010 Starch Nanoparticles 11 1139

    Google Scholar 

  • Couvreur P, Barratt G, Fattal E, Legrand P and Vauthier C 2002 Crit. Rev. Ther. Drug Carrier Syst. 19 99

    Article  CAS  Google Scholar 

  • Douziech-Eyrolles L, Marchais H, Hervé K, Munnier E, Linassier C, Dubois P and Chourpa I 2007 Int. J. Nanomed. 2 541

    Google Scholar 

  • Fang J and Fowler P 2002 Food Agric. Environ. 1 82

    Google Scholar 

  • Gupta R and Bajpai A K 2010 J. Biomater. Sci. Polym. Ed. 1

  • Gomez–Lopera S, Plaza, R C and Delgado A V J 2001 Coll. Interf. Sci. 240 40

    Article  Google Scholar 

  • Guo S J, Li D, Zhang L and Wang E K 2009 Biomaterials 30 1881

    Article  CAS  Google Scholar 

  • Honda H, Kawabe A, Shinkai M and Kobayashi T 1998 J. Ferment Bioeng. 86 191

    Article  CAS  Google Scholar 

  • Kim K D et al 2003 Chem. Mater. 5 43

    Google Scholar 

  • Kissel T and Roser M 1991 Proceeding of the international symposium on controlled release of bioactive materials, San Diego 18 275

    Google Scholar 

  • Kreuter J 1983 Pharm. Acta Helv. 58 196

    CAS  Google Scholar 

  • Kumar C S S R 2005 Biofunctionalization of nanomaterials (Weinheim: Wiley-VCH) 1 p. 1468

  • Kusaka M, Takegami K, Sudo A, Yamazaki T, Kawamura J and Uchid A 2002 J. Orthop. Sci. 7 354

    Article  Google Scholar 

  • Lehr C M, Schaefer U F, Wenz G, González D B, Ortega-Vinuesa J L, Loretz B, Stauner T and Santander-Ortega M J 2010 J. Control. Rel. 141 85

    Article  Google Scholar 

  • Liu X, Yueping G, Zhiya M and Liu H 2004 Langmuir 20 10278

    Article  CAS  Google Scholar 

  • Lüebbe A S, Alexiou C and Bergemann C 2001 J. Surg. Res. 95 200

    Article  Google Scholar 

  • MaaBen S, Fattal E and Muller R H 1993 STP Pharm. Sci. 3 11

    Google Scholar 

  • Morales M A, Jain T K and Labhasetwar V 2005 J. Appl. Phys. 97 1

    Article  Google Scholar 

  • Mohanraj V J and Chen Y 2006 J. Pharm. Res. 5 561

    Google Scholar 

  • Muller R H et al 1997 Scientific and clinical applications of magnetic carriers (eds) U Hafeli et al (New York: Plenum Press)

  • Nidhin M, Indumathy R, Sreeram K J and Balachandran U N 2008 Bull. Mater. Sci. 31 936

    Article  Google Scholar 

  • Parikh R H, Parikh J R, Dubey R R, Soni H N and Kapadia K A 2003 J. Pharm. Sci. 13 1

    Google Scholar 

  • Roullin V G, Deverre J R, Lemaire L, Hindre F, Venier-Julienne M C and Vienet R 2002 Eur. J. Pharm. Biopharm. 59 293

    Article  Google Scholar 

  • Saboktakin M R, Maharramov A and Ramazanov M A 2009 Carbohyd. Polym. 78 292

    Article  CAS  Google Scholar 

  • Shrivastava J and Bajpai A K 2005 Polym. Int. 54 1524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K BAJPAI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAJPAI, A.K., LIKHITKAR, S. Investigation of magnetically enhanced swelling behaviour of superparamagnetic starch nanoparticles. Bull Mater Sci 36, 15–24 (2013). https://doi.org/10.1007/s12034-013-0432-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-013-0432-9

Keywords

Navigation