Skip to main content
Log in

Effect of high heating rate on thermal decomposition behaviour of titanium hydride (TiH2) powder in air

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

DTA and TGA curves of titanium hydride powder were determined in air at different heating rates. Also the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into consideration. A great breakthrough of the practical interest in the research was the depiction of the P H2-time curves of TiH 2 powder at various temperatures in air. In accordance with the results, an increase in heating rate to higher degrees does not change the process of releasing hydrogen from titanium hydride powder, while switching it from internal diffusion to chemical reaction. At temperatures lower than 600 °C, following the diffusion of hydrogen and oxygen atoms in titanium lattice, thin layers TiH x phase and oxides form on the powder surface, controlling the process. On the contrary, from 700 °C later on, the process is controlled by oxidation of titanium hydride powder. In fact, the powder oxidation starts around 650 °C and may escalate following an increase in the heating rate too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Bhosle V, Gaburaj E G, Miranova M and Salama K 2003 Mater. Eng. A356 190

    Article  Google Scholar 

  • Bliznakov S, Lefterov E, Bozukov L, Popov A and Andreev P 2004 Techniques for characterization of hydrogen absorption/desorption in metal hydride alloys, Proceedings of the international workshop “advanced techniques for energy sources, investigation and testing” (Sofia, Bulgaria)

  • Bobet J L, Even C and Quenisset J M 2003 J. Alloys Compd. 348 247

    Article  CAS  Google Scholar 

  • Castro F and Meyer G 2002 J. Alloys Compd. 330 59

    Article  Google Scholar 

  • Criado J M and Ortega A 1987 Acta Metall. 35 1715

    Article  CAS  Google Scholar 

  • Duarte I and Banhart J 2000 Acta Mater. 48 2349

    Article  CAS  Google Scholar 

  • Gabis J E, Voit A P, Evard E A, Zaika Yu V, Chernov I A and Yartys V A 2005 J. Alloys Compd. 404 312

    Article  Google Scholar 

  • Galwey A K and Brown M E 1995 Proc. R. Soc. Lond. A450 510

    Google Scholar 

  • Kennedy A R 2002 Scripta Materiala 47 763

    Article  CAS  Google Scholar 

  • Kennedy A R and Lopez V H 2003 Mater. Sci. Eng. A357 258

    Article  Google Scholar 

  • Kissinger H E 1956 J. Research National Bureau Standards 57 217

    Article  CAS  Google Scholar 

  • Kissinger H E 1957 Anal. Chem. 29 1702

    Article  CAS  Google Scholar 

  • Lehmhus D and Rausch G 2004 Adv. Eng. Mater. 6 313

    Article  CAS  Google Scholar 

  • Matijasevic B, Fiechter S, Zizak I, Gorke O, Wanderka N, Schubert-Bischoff P and Banhart J 2004 Decomposition behaviour of as-received and oxidized TiH 2 powder, Powder Metallurgy World Congress (Vienna: European Powder Metallurgy Association)

  • Matijasevic-Lux B, Banhart J, Fiechter S, Gorke O and Wanderka N 2006 Acta Mater. 54 1887

    Article  CAS  Google Scholar 

  • Meisel L V and Cote P J 1983 Acta Mater. 31 1053

    Article  CAS  Google Scholar 

  • Miyoshi T, Itoh M, Akiyama S, and Kitahara A 2000 Adv. Eng. Mater. 2 179

    Article  CAS  Google Scholar 

  • Padurets L N, Dobrokhotova Zh V and Shilov A L 1999 Inter. J. Hydrog. Energy 24 153

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez P E, Criado J M and Pérez-Maqueda L A 2008 J. Therm. Anal. Calorim. 94 427

    Article  Google Scholar 

  • Sandim H, Morante B and Suzuki P 2005 Mater. Res. 8 293

    Article  CAS  Google Scholar 

  • Setoyama D, Matsunaga J, Ito M, Muta H, Kurosaki K, Uno M and Yamanaka S 2005 J. Nucl. Mater. 344 298

    Article  CAS  Google Scholar 

  • Tsuchiya B, Teshigawara M, Nagata S, Konashi K, Yasuda R, Nishino Y, Nakagawa T and Yamawaki M 2002 Nuclear Inst. Meth. Phys. Res. B190 699

    Article  CAS  Google Scholar 

  • Tsuchiya B, Nagata S, Ohtsu N, Toh K and Shikama T 2005 Japan Institute Metals 46 196

    CAS  Google Scholar 

  • Yang D H and Hur B Y 2006 Mater. Lett. 60 3635

    Article  CAS  Google Scholar 

  • Yang D H, Hur B Y, He D P and Yang S R 2007 Mater. Sci. Eng. A445 415

    Article  Google Scholar 

  • Zeppelin F V, Hirscher M, Stanzick H and Banhart J 2003 Compos. Sci. Tech. 63 2293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A RASOOLI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RASOOLI, A., BOUTORABI, M.A., DIVANDARI, M. et al. Effect of high heating rate on thermal decomposition behaviour of titanium hydride (TiH2) powder in air. Bull Mater Sci 36, 301–309 (2013). https://doi.org/10.1007/s12034-013-0455-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-013-0455-2

Keywords

Navigation