Skip to main content

Advertisement

Log in

Chemical bath deposition of CdS thin films doped with Zn and Cu

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the physical properties of CdS films were investigated. The morphology, thickness, bandgap energy, crystalline structure and elemental composition of Zn- and Cu-doped CdS films were investigated and compared to the undoped CdS films properties. Both Zn- and Cu-doped CdS films presented a cubic crystalline structure with (1 1 1) as the preferential orientation. Lower values of the bandgap energy were observed for the doped CdS films as compared to those of the undoped CdS films. Zn-doped CdS films presented higher thickness and roughness values than those of Cu-doped CdS films. From the photoluminescence results, it is suggested that the inclusion of Zn and Cu into CdS crystalline structure promotes the formation of acceptor levels above CdS valence band, resulting in lower bandgap energy values for the doped CdS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilar-Hernández J, Sartre-Hernández J, Mendoza-Perez R, Contreras-Puente G, Cárdenas-García M and Ortíz-López J 2006 Sol. Energy Mater. Solar Cells 90 704

    Article  Google Scholar 

  • Barabasi A L and Stanley H E 1995 Fractal concepts in surface growth. (Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Cullity B D 1978 Elements of X-ray diffraction (MA, USA: Addison-Wesley Reading)

  • Dávila-Pintle J A, Lozada-Morales R, Palomino-Merino M R, Rivera-Márquez J A, Portillo-Moreno O and Zelaya-Angel O 2007 J. Appl. Phys. 101 013712

    Article  Google Scholar 

  • Glinka Y D, Lin S H, Hwang L P, Chen Y T and Tolk N H 2001 Phys. Rev. B64 085421

    Article  Google Scholar 

  • Greenwood N N and Earnshaw A 1997 Chemistry of the elements Butterworth–Heinemann. ISBN: 0080379419 2nd edn

  • Herrera S, Ramos C M, Patiño R, Peña J L, Cauich W, Oliva A I 2006 Brazilian J. Phys. 36 1054

    Article  Google Scholar 

  • Hubert C, Nagavi N, Canava B, Etcheverry A and Lincot D 2007 Thin Solid Films 515 6032

    Article  Google Scholar 

  • Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovolt: Res. Appl. 19 g894

    Article  Google Scholar 

  • Jafari A, Zakaria A, Rizwan Z and Mohd Ghazali M S 2011 Int. J. Mol. Sci. 12 6320

    Article  Google Scholar 

  • JCPDS 2002 International Centre for Diffraction Data. Reference 42–1411

  • Kato H, Sato J, Abe T and Kashiwaba Y 2004 Phys. Status Solidi (C) 1 653

    Article  Google Scholar 

  • Kazmerski L L 2006 J. Electron Spectrosc. Relat. Mater. 150 105

    Article  Google Scholar 

  • Khallaf H, Chai G, Chow L, Park S and Schulte A 2008 J. Phys. D: Appl. Phys. 41 185304

    Article  Google Scholar 

  • Kim N H, Ryu S H, Noh H S and Lee W S 2012 Mater. Sci. Semicond. Process 15 125

    Article  Google Scholar 

  • Lee J H, Lee Y H, Ki J H and Park Y K 2000 Jpn. J. Appl. Phys. Part 1 39 1669

    Article  Google Scholar 

  • Mahdi M A, Kasem S J, Hassen J J, Swadi A A and Al-Ani S K J 2009 Int. J. Nanoelectr. Mater. 2 163

    Google Scholar 

  • Moualkia H, Hariech S, Aida M S, Attaf N and Laifa E L 2009 J. Phys. D: Appl. Phys. 42 135404

    Article  Google Scholar 

  • Oliva A I, Castro-Rodriguez R, Solis-Canto O, Sosa Victor, Quintana P and Peña J L 2003 Appl. Surf. Sci. 205 56

    Article  Google Scholar 

  • Oliva-Avilés A I, Patiño R and Oliva A I 2010 Appl. Surf. Sci. 256 6090

    Article  Google Scholar 

  • Oliva A I, Solís-Canto O, Castro-Rodríguez R and Quintana P 2001 Thin Solid Films 391 28

    Article  Google Scholar 

  • Osipyonok N M, Singaevsky A F, Noskov Y V, Piryatinski Y P, Smertenko P S, Dimitriev O P and Pud A A 2008 J. Mater. Sci. Eng. B147 254

    Article  Google Scholar 

  • Paudel N R, Wieland K A and Compaan A D 2012 Sol. Energy Mater. Sol. Cells 105 109

    Article  Google Scholar 

  • Portillo-Moreno O et al 2006 J. Electrochem. Soc. 153 G926

    Article  Google Scholar 

  • Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R 2008 Prog. Photovolt: Res. Appl. 16 235

    Article  Google Scholar 

  • Reyes P and Velumani F 2012 Mater. Sci. Engg. B177 1452

    Article  Google Scholar 

  • Rios-Flores A, Ares O, Camacho J M, Rejón V and Peña J L 2012 Solar Energy 86 780

    Article  Google Scholar 

  • Romeo A, Khrypunov G, Kurdesau F, Arnold M, Batzner D L, Zogg H and Tiwar A N 2006 Sol. Energy Mater. Sol. Cells 90 3407

    Article  Google Scholar 

  • Roy P and Srivastava S K 2006 J. Phys. D: Appl. Phys. 39 4771

    Article  Google Scholar 

  • Sebastian P J 1993 Appl. Phys. Lett. 62 2956

    Article  Google Scholar 

  • Shaha N A, Sagar R R, Mahmooda W and Syed W A A 2012 J. Alloys Compd. 512 185

    Article  Google Scholar 

  • Tauc J J 1976 Amorphous and liquid semiconductor. (New York: Plenum)

    Google Scholar 

  • Tauc J J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627

    Article  Google Scholar 

  • Tec-Yam S, Patiño R and Oliva A I 2011 Current Appl. Phys. 11 914

    Article  Google Scholar 

  • Wu X 2004 Solar Energy 77 803

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank to Drs C Gutiérrez-Lazos and P Quintana for the fruitful discussions. Technical support of MSc Daniel Aguilar is also strongly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A I OLIVA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

OLIVA, A.I., CORONA, J.E., PATIÑO, R. et al. Chemical bath deposition of CdS thin films doped with Zn and Cu. Bull Mater Sci 37, 247–255 (2014). https://doi.org/10.1007/s12034-014-0642-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0642-9

Keywords

Navigation