Skip to main content
Log in

Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The present paper reports the fabrication of TiO2@PVC nanocomposites by incorporating TiO2 in polyvinyl chloride (PVC) followed by solution casting to prepare TiO2@PVC nanocomposite thin films. The as-prepared TiO2@PVC nanocomposite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, thermogravimetric analysis, optical spectroscopy and mechanical strength analyses. The TiO2@PVC nanocomposites were found to be thermally and mechanically more stable compared with pure PVC. The anatase TiO2 in the TiO2@PVC nanocomposite showed a lower indirect band gap compared with pure TiO2, which can be attributed to the strain within the nanocomposite, thereby affecting the band-structure of the nanocomposite. Significant enhancement in the mechanical properties of TiO2@PVC compared with pure PVC was observed with a 10 wt% TiO2 loading, such as a 50% increase in Young’s modulus and almost 100% improvement in the tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wang C, Cheng R, Liao L and Duan X 2013 Nanotoday 8 514

  2. Zuo J, Wang Y and Chung T S 2013 J. Membr. Sci. 433 60

  3. Rezwan K, Chen Q Z, Blaker J J and Boccaccini A R 2006 Biomaterials 27 3413

  4. Abdal-hay A, Dewidar M, Lim J and Lim J K 2014 Ceram. Int. 40 2237

  5. Mills A and Hunte S A 1997 J. Photochem. Photobiol. A: Chem. 108 1

  6. Banerjee A N 2011 Nanotechnol. Sci. Appl. 4 35

  7. Ansari M O and Mohammad F 2011 Sens. Actuators B 157 122

  8. Irimpan L, Krishnan B, Nampoori V P N and Radhakrishnan P 2008 J. Colloid. Interface Sci. 324 99

  9. Kun R, Mogyorosi K and Dekany I 2006 Appl. Clay Sci. 32 99

  10. Hakkarainen M 2003 Polym. Degrad. Stabil. 80 451

  11. Real L P and Gardette J 2001 Polym. Test. 20 789

  12. Yang C and Wu G M 2009 Mater. Chem. Phys. 114 948

  13. Liu F, Liu H, Li X, Zhao H, Zhu D, Zheng Y and Li C 2012 Appl. Surf. Sci. 258 4667

  14. Yoo H and Kwak S 2011 Appl. Catal. B: Environ. 104 193

  15. Yang C, Gong C, Peng T, Deng K and Zan L 2010 J. Hazard. Mater. 178 152

  16. Zaleska A 2008 Rec. Patents Eng. 2 157

  17. Yin W J, Chen S, Yang J H, Gong X G, Yan Y and Wei S H 2010 Appl. Phys. Lett. 96 221901

  18. Reddeppa N, Sharma A K, Rao V V R N and Chen W 2013 Microelectron. Eng. 112 57

  19. Elashmawi I S, Hakeem N A, Marei L K and Hanna F F 2010 Physica B: Condensed Matter 405 4163

  20. Spurr A R and Myers H 1957 Anal. Chem. 29 760

  21. Cullity B D 1978 Elements of X-ray diffraction (CA: Addison-Wesley)

  22. Dobkowski Z 2006 Polym. Degrad. Stabil. 91 488

  23. Xu Z P, Saha S K, Braterman P S and D’Souza N 2006 Polym. Degrad. Stabil. 91 3237

  24. Rangraj A, Vangani V and Rakshit K 1997 J. Appl. Polym. Sci. 66 45

  25. Abthagir P S, Saraswathi R and Sivakolunthu S 2004 Thermochim. Acta 411123

  26. Gregorio R Jr. and Capitao R C 2000 J. Mater. Sci. 35 299

  27. Banerjee A N, Joo S W and Min B K 2012a J. Nanomater 2012 14

  28. Banerjee A N, Joo S and Min B 2012b J. Appl. Phys. 112 114329

  29. Lindberg J D and Synder D G 1973 Appl. Opt. 12 573

  30. Pankove J I 1971 Optical process in semiconductors (New Jersey: Printice-Hall)

  31. Valencia S, Marin J M and Restrepo G 2010 Open Mater. Sci. J. 4 9

  32. Reddy K M, Manorama S V and Reddy A R 2003 Mater. Chem. Phys. 78 239

  33. Welte A, Waldauf C, Brabec C and Wellmann P J 2008 Thin Solid Films 516 7256

  34. Vadukumpully S, Paul J, Mahanta N and Valiyaveetti S 2011 Carbon 49 198

Download references

Acknowledgement

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A1031189).

Electronic Supplementary Material

Supplementary material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MOONYONG LEE.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HASAN, M., BANERJEE, A.N. & LEE, M. Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films. Bull Mater Sci 38, 283–290 (2015). https://doi.org/10.1007/s12034-014-0831-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0831-6

Keywords

Navigation